

westonandsampson.com

WESTON & SAMPSON ENGINEERS, INC. 100 Foxborough Boulevard, Suite 250 Foxborough, MA 02035 tel: 508.698.3034

STORMWATER MANAGEMENT REPORT

February 2024

TOWN OF Foxborough MASSACHUSETTS

Department of Public Works 70 Elm Street

PREPARED FOR: TOWN OF FOXBOROUGH

TABLE OF CONTENTS

CHECKLIST FOR STORMWATER REPORT

STORMWATER REPORT SUMMARY

APPENDIX A – LOCUS MAP AREA RECEPTORS MAP FEMA FLOOD HAZARD MAP NRCS SOIL MAP & DESCRIPTION TEST PIT AND BORING LOCATION LOGS

APPENDIX B – PRE- VS. POST-FLOW SUMMARY EXISTING DRAINAGE AREA MAP EXISTING HYDROCAD MODEL PROPOSED DRAINAGE AREA MAP PROPOSED HYDROCAD MODEL

APPENDIX C – RECHARGE CALCULATION DRAWDOWN CALCULATION WATER QUALITY VOLUME CALCULATION WATER QUALITY FLOW RATE CALCULATION FOR SWTU SIZING TSS REMOVAL WORKSHEET STORMCEPTOR FACT SHEET ISOLATOR ROW DOCUMENTATON

APPENDIX D – LONG TERM POLLUTION PREVENTION PLAN CONSTRUCTION PERIOD POLLUTION AND EROSION AND SEDIMENTATION CONTROL PLAN ILLICIT DISCHARGE COMPLIANCE STATEMENT OPERATIONS AND MAINTENANCE PLAN

.....

westonandsampson.com

Weston & Sampson

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

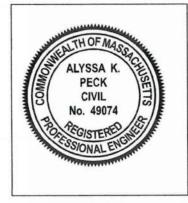
To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.


Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Longterm Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Upsnipell 1.31.24

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Redevelopment

Mix of New Development and Redevelopment

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

No disturbance to any Wetland Resou	rce Areas
-------------------------------------	-----------

- Site Design Practices (e.g. clustered development, reduced frontage setbacks)
- Reduced Impervious Area (Redevelopment Only)
- Minimizing disturbance to existing trees and shrubs
- LID Site Design Credit Requested:
 - Credit 1
 - Credit 2
 - Credit 3
- Use of "country drainage" versus curb and gutter conveyance and pipe
- Bioretention Cells (includes Rain Gardens)
- Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
- Treebox Filter
- U Water Quality Swale
- Grass Channel
- Green Roof
- Other (describe):

Standard 1: No New Untreated Discharges

No new untreated discharges

- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

 \square

Soil Analysis provided.

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

Static	🗌 Simple Dynamic
--------	------------------

Dynamic Field¹

- Runoff from all impervious areas at the site discharging to the infiltration BMP.
- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.

Recharge	BMPs have beer	n sized to infiltrate t	he Required Recha	irge Volume.
----------	----------------	-------------------------	-------------------	--------------

- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - $\hfill\square$ Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- \boxtimes Calculations showing that the infiltration BMPs will drain in 72 hours are provided.

Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Checklist (continued)
-------------	------------

Standard 4: Water Quality (continued)

- The BMP is sized (and calculations provided) based on:
 - The 1/2" or 1" Water Quality Volume or
 - The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
- The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
- A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

- The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
- The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted **prior to** the discharge of stormwater to the post-construction stormwater BMPs.
- The NPDES Multi-Sector General Permit does *not* cover the land use.
- LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
- All exposure has been eliminated.
- All exposure has *not* been eliminated and all BMPs selected are on MassDEP LUHPPL list.
- The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

- The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:
 - Limited Project
 - Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
 - Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
 - Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
 - Bike Path and/or Foot Path
 - Redevelopment Project
 - Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.
- The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

Applicant/Project Name:	Town of Foxborough – Department of Public Works
Project Address:	70 Elm Street, Foxborough, MA
Application Prepared by: Firm: Registered PE:	Weston & Sampson, Inc. Alyssa Peck, PE

NARRATIVE

Project Description

The Town of Foxborough proposes expansion to the existing Department of Public Works (DPW) facility located at 70 Elm Street in Foxborough, Massachusetts. The proposed project is located at the existing Foxborough DPW property (hereinafter the "Site") which occupies approximately 9.75 acre parcel of land identified as Assessors Map ID 107-036-000.

The Site is located within a parcel that is owned and operated by the Town of Foxborough and is generally bordered by residential properties to the north, railroad tracks and residential properties to the south, Interstate highway I-95 to the east, and a solar field to the west. The Site includes a school bus parking area to the north and the DPW facility to the south. The proposed development includes improvements to both the DPW facility and the school bus parking area. A locus map of the site, as well as other site mapping, is included in Appendix A.

The existing DPW facility includes the main DPW garage with an approximate footprint of 11,000 square feet, an office building with approximate footprint of 2,280 square feet, a salt shed with an approximate footprint of 4,780 square feet, a vehicle storage building with an approximate footprint of 12,080 square feet, and several smaller sheds and covered storage containers. A fuel island is located in the northern portion of the Site between the DPW garage building and the school bus parking lot. The ground surface at the site is mostly comprised of asphalt pavement around existing buildings and a combination of packed gravel and recycled AC pavement millings in the area occupied by school bus parking and DPW yard area.

The subsurface utilities at the site include water, gas, sewer, electric, and drainage. An existing drainage trunk line bisects the site from west to east and carries offsite runoff from Elm Street across the Site to discharge into the wooded area adjacent to I-95 east of the Site. Elm Street is currently lacking any drainage improvements and the runoff from approximately 1,100 of Elm Street flows along the gutter of the roadway toward a low point located directly in front of DPW parcel, where it is collected via a set of two catch basins and conveyed east, across the DPW site via a 15"/12" trunk line. The trunk line picks up additional drainage from various catch basins located on DPW property and ultimately discharges on the west side of the Site into a wooded area adjacent to I-95.

The Town of Foxboro previously planned to extend roadway drainage along Elm Street and have prepared preliminary design documents that estimated additional offsite drainage area contributing to the trunk line to be approximately 74,341 square feet. Weston & Sampson considered this offsite area and its runoff in designing of stormwater infrastructure for the site to ensure adequate capacity

is provided to convey all site runoff, as well as offsite runoff in a safe and efficient manner. Since the existing 15"/12" turnk line is significantly undersized for the flow it contributing to it, the collector drain line will be upsized to provide sufficient capacity to convey 25-year storm. Since the ultimate discharge point from the trunk line is located off DPW property, the discharge pipe will remain in its current size, however an additional overflow structure will be added in the landscape strip adjacent to rear lot line to provide secondary discharge point for larger storms. Additionally sections of the site drainage will be disconnected from the collector drain pipe to keep the additional capacity of the trunk line available for conveyance of offsite drainage from Elm Street.

MassGIS indicates there are no wetlands located on the Site, however a small pocket wetland was identified west of the Site, across Elm Street, on the solar panel property. The wetland location identified by MassGIS was reviewed by Weston & Samson staff and Foxborough Conservation Agent and was confirmed not to be a wetland. Therefore, no wetland buffers are located on the Site.

The proposed project includes the construction of an approximately 9,700 square foot addition to the existing DPW building and a new approximately 3,400 square foot double sided fuel-island. The building addition will be located adjacent to the north side of the existing DPW building and will include four maintenance and and a wash bay. The new fuel island will be located north of the existing DPW building and will include 10,000 -gallon gasoline and diesel fuel tanks.

Additional proposed site improvements will include underground utilities, stormwater management areas, new asphalt pavement parking and driveways, a reconfigured school bus parking area, and ancillary landscape improvements.

Stormwater Management:

The proposed project will incorporate Stormwater Best Management Practices (BMPs) in compliance with the Massachusetts Department of Environmental Protection (DEP) Stormwater Management Standards and local regulations.

The approach to stormwater management for the project consists of maintaining existing drainage patterns, minimizing stormwater runoff to off-site areas, and installing structural BMPs to provide water quality treatment, groundwater recharge, and attenuation of peak flows. To achieve this, the runoff from the driveways, parking, and circulation areas will be conveyed to a proposed deep sump catch basins equipped with "gas and oil" hood traps and hydrodynamic separators for pretreatment before discharging into the proposed underground infiltration chamber system, which will provide additional water quality treatment and allow the stormwater to recharge into the ground. The roof runoff from the proposed building will discharge into the proposed underground infiltration chambers directly, where it will recharge into the ground.

Stormwater Design

Weston & Sampson utilized HydroCAD computer software to model the stormwater runoff for 2year, 10-year, 25-year, and 100-year 24-hour storm events. The rainfall amounts used for the analysis were based on the NOAA Atlas 14, Volume 10. The rainfall depths were 3.43 inches, 5.24 inches, 6.37 inches, and 8.12 inches, respectively.

Soil information was obtained from the Natural Resources Conservation Service (NRCS) Norfolk and Suffolk Counties Web Soil Survey. The soil survey indicated mostly Udorthents with hydrologic rating A in the majority of the Site, Merrimac fine sandy loam with hydrologic rating A in the southern portion

of the site, and Canton fine sandy loam, with hydrologic rating B in the northern portion of the site... Since most of the site was classified as hydrologic rating A, a Hydrologic Group A was assigned to the soils within the project area for the purposes of hydrologic calculations. The soil map and descriptions are included in Appendix A.

In addition to information gathered from Web Soil Survey, three test pits (TP-3 through TP-7) were performed in the locations of the proposed stormwater management systems to confirm soil information obtained from Web Soil Survey and to determine the feasibility of infiltration and respective infiltration rates. The test pits were excavated to a depth ranging from 7.5 feet to 9.2 feet below ground surface.. Additionally, borings and test pits were conducted for geotechnical purposes to help bolster the understanding of the subsurface conditions. Complete test pit and boring logs are included in Appendix A.. In summary, the test pit and boring logs indicate a mixture of sand and sandy loam to a depth below the proposed infiltration, therefore, a Rawl's rate of 1.02 inches per hour was used for the design of infiltration BMPs. No standing groundwater were observed during test, however redox features were noted at 72 inches and 70 inches below ground surface for TP-3 and TP-5 respectively. Complete test pit and boring logs are included in Appendix A.

Existing Drainage Conditions

The existing conditions in the project area of the site consists of approximately 242,912 square feet of impervious surface, comprised of the DPW buildings, driveways, and asphalt areas, and areas of compacted gravel/pavement millings. Topography of the site generally slopes from north at elevation 262 to south, at elevation 242, with the lowest point of the Site located in the southeastern corner, near the intersection of I-95 corridor and existing railroad tracks.

Based on the existing topography, the entire Site is delineated into one single watershed with Point of Analysis (POA-1), shown graphically in Appendix B.

POA-1 is further delineated into four Drainage Areas: A1, A2, B1, and C1. Drainage Area A1 contains western portion of the Site and includes majority of the bus parking area, DPW parking area in front of the existing DPW garage, and existing fuel island. Stormwater from this area flows toward a set of existing catch basins, where runoff is intercepted and discharged into the 12" RCP trunk line that carries stormwater across the Site from Elm Street toward wooded area adjacent to I-95.

Drainage Area A2 contains eastern portion of the Site and includes eastern portion of the bus parking area, northern portion of the DPW garage roof area, and DPW storage yard area located north and east of the existing DPW garage. Stormwater from this area flows toward a catch basin in the rear of the Site, and discharges into the 12" RCP trunk line that further carries the runoff to wooded area adjacent to I-95.

Drainage Area B1 includes a small parking lot in front of DPW admin building. The runoff from this area sheet flows toward an existing infiltration basin located along Elm Street. During large storm the overflow from the infiltration area overtops the basin and sheet flows along railroad corridor in the southeasterly direction toward POA-1.

Drainage Area C1 contains southeastern quadrant of the Site and includes roof areas from the DPW admin building, majority of the roof from DPW garage building, salt shed roof area and vehicle storage roof area, in addition to the DPW yard area surrounding the buildings. The runoff from this area sheet flows to the a couple of catch basins located in the center of the paved yard area behind DPW garage, where the runoff is intercepted and discharged into the wooded area adjacent to I-95 via a 10" steel pipe and 4" PVC pipe.

Proposed Drainage Conditions

In the proposed condition the amount of impervious surface on site will slightly decrease to approximately 228,764 square feet. While the school bus parking area will be expanded, the addition of the landscape buffers along Elm Street frontage and a number of landscape islands through the site will offset the increase in impervious area due to the school bus parking expansion and result in overall decrease in impervious area on site. To mitigate the runoff from the expanded bus parking area in the proposed condition, a series of underground chamber infiltration systems is proposed. The infiltration systems will ensure that proposed runoff rates will not exceed the existing rate of runoff. The stormwater runoff from the paved areas will be directed into deep sump catch basins and conveyed to hydrodynamic separators for pre-treatment prior to discharge into proposed infiltration systems.

Similar to the existing condition, the runoff from the Site discharges into a single overall design point - Points of Analysis: POA-1. The contributing drainage area is further divided into six drainage areas (A1, B1, B2, C1, D1, E1) which are graphically shown on Hydrology Map – Proposed Conditions in Appendix B.

Area A1 includes the reconfigured bus parking area. Storm water from this area will be collected via deep sump catch basins and will be treated by a proposed hydrodynamic separator prior to discharge into Underground Infiltration Chamber System C (INF-C). Overflow from the INF-C will discharge through an overflow grate into the landscaped area in the rear of the site.

Area B1 includes a paved circulation area in the western portion of the site, in front of the existing DPW admin and garage buildings. The runoff from the paved areas will be collected via deep sump catch basins and will be routed through a hydrodynamic separator before connecting into the existing trunk line that discharges into the wooded areas adjacent to I-95 through an existing outfall.

Area B2 includes a paved circulation area in the eastern portion of the site, north of existing vehicle storage area and east of the proposed DPW garage addition. This is an existing paved circulation area. The runoff from the paved areas will be collected via deep sump catch basins and will be routed through a hydrodynamic separator before connecting to the existing trunk line that discharges into the wooded areas adjacent to I-95 through an existing outfall.

Area C1 includes a portion of the roof area from DPW garage addition. The roof runoff from the vehicle storage building will discharge into the INF-A directly without pre-treatment as permitted under the MA Stormwater Regulations. The overflow from INF-A will discharge into the existing stormwater trunk line that discharges into the wooded areas adjacent to I-95 through an existing outfall.

Area D1 encompass the DPW yard area behind existing DPW garage building and existing vehicle storage and salt shed buildings. Stormwater from this area will be collected via deep sump catch basins and routed through a proposed hydrodynamic separator for pre-treatment. Following pre-treatment, the runoff from D1 will discharge into the Underground Infiltration Chamber System B (INF-B) for further treatment and recharge. Overflow from the INF-B will discharge through an overflow grate into the landscaped area in the rear of the site.

Area E1 includes the existing DPW yard area located in the southeastern corner of the site, and is bounded by rear property line, existing salt shed, and vehicle storage building. This area will be repaved and the existing catch basin located in this area will be replaced with a hydrodynamic separator prior to discharging toward the wooded area abutting I-95. The existing outlet pipe will be replaced with a new pipe to improve pipe condition and capacity.

Best Management Practices (BMPs) and Low Impact Development (LID) Measures

Low Impact Development (LID) Measures will be incorporated, where possible, into this project. Unlike the existing condition, the proposed redevelopment provides sediment and oil removal, peak rate attenuation, and groundwater recharge. The BMPs used in this project are described below.

Deep Sump Hooded Catch Basins

The catch basins are to be constructed with a sump (minimum 4 feet) and oil/debris traps to prevent the discharge of sediments and floating contaminants.

Hydrodynamic Separators

The hydrodynamic separators dissipate velocity and allow oil and debris to rise and sediment to settle out.

Underground Infiltration Chambers

The infiltration areas will store and/or attenuate runoff from the storm events and allow for exfiltration of runoff and recharge of groundwater.

Below is an explanation of MassDEP Stormwater Standards 1-10 as they apply to the Town of Duxbury Public Works Facility project:

STANDARD 1 – NO NEW UNTREATED DISCHARGES

The proposed project will create no new untreated discharges.

The proposed project was designed to mimic existing conditions as much as possible and improve the conditions to the maximum extent practicable. Supporting information and computations demonstrating that no new untreated discharges will result from the project are presented through compliance with Standards 4 through 6.

Surface runoff from new impervious areas will be directed into deep sump catch basins /hydrodynamic separators for pre-treatment prior to discharging into proposed infiltration chamber systems, which were sized to store and recharge up to 10-year 24-hour storm event. For a 100-year

.....

storm, the overflow from the underground infiltration chamber systems will discharge into existing drainage collector pipe that discharges into the wooded area behind the Site. Additional overflow grates from Infiltration Chamber System B and Infiltration System C will be provided in the landscaped area in the rear of the site to allow for safe overflow from the chamber systems during large storm events. The receiving area surrounding the overflow outlet grates will be stabilized with stone level spreader to help slow and distribute runoff to minimize any potential erosion.

STANDARD 2 – PEAK RATE ATTENUATION

The Project has been designed to fully comply with standard 2.

The rainfall-runoff response of the Site under existing and proposed conditions was analyzed for storm events with recurrence intervals of 2, 10, 25, and 100 years.

Post-construction peak runoff rates at the project site for the 2-, 10-, 25- and 100-year storms will not increase. Supporting documentation is included with this report. To ensure that the work incorporates the performance standards recommended in the DEP's Stormwater Management Policy, necessary erosion and sedimentation control measures will be utilized during construction. These measures will include compost filter tubes, catch basin sediment controls, and a stabilized construction entrance, as depicted on the plans.

STANDARD 3 – RECHARGE

The impervious area within the proposed project limits will slightly decrease after construction. In addition, the recharge will be provided in all three of the underground infiltration chamber systems. The recharge volume provided under post-development conditions is greater than the recharge volume required by DEP's stormwater management Standards. The minimum required recharge volume is computed to be 0 cubic feet since there is no increase in overall impervious area for the site. The proposed infiltration BMPs result in a total recharge volume of 20,997 cubic feet. The proposed infiltration BMPs all drain within 72 hours.

The recharge requirement calculation is included in Appendix C and illustrates compliance with the current DEP Stormwater policy.

STANDARD 4 – WATER QUALITY

This project incorporates several stormwater pretreatment and treatment BMPs. Runoff from paved surfaces is routed through pretreatment BMPs (deep sump catch basins, proprietary stormwater treatment units,) and subsurface recharge treatment BMPs. Non-contaminated roof runoff from DPW garage expansion is routed directly to the subsurface infiltration systems.

Per the MassDEP Stormwater Regulations, the Water Quality Volume (WQV) is 1.0 inches for the subject site due to the site being a land use with a higher potential pollutant load.

For redevelopment portion of the project, Standard 4 is required to be met only to the maximum extent practicable. Stormwater from all new impervious areas within the project limits will be directed

.....

into at least one drainage structure for treatment. The treatment structures utilized on site include deep sump catch basins and hydrodynamic separators for redevelopment areas.

The northern portion of the Site, which includes DPW building addition and reconfigured bus parking area, was designed to provide full compliance with Standard 4. To achieve full compliance with this standard, the runoff from the paved areas in that portion of the site will be collected in deep sump catch basins and conveyed to hydrodynamic separators for pre-treatment before infiltration in the underground chambers.

STANDARD 5 – LAND USES WITH HIGHER POTENTIAL POLLUTANT LOADS (LUHPPLs)

Because the use of the property will involve maintenance of vehicles, storage of oils and anti-freeze, and snow storage; the land use has the potential for higher pollutant loads. A Long-Term Pollution Prevention Plan (included in Appendix D) identifies proper procedures of practices for source control and pollution prevention due to the site specific LUHPPL.

As this site is a re-development, the project need only to meet the pre-treatment requirement of Standard 5 for re-developed sections of the Site. The 44% TSS Removal pre-treatment will be achieved prior to discharging any runoff from the proposed paved areas. This requirement will be achieved using a treatment train of deep sump catch basins and hydrodynamic separators, combined with incorporating non-structural BMP's such as street sweeping.

For new-development section of the project, the requirement of 80% TSS removal prior to discharge will be achieved by utilizing a treatment train that consists of deep sump catch basins, hydrodynamic separators, and underground infiltration chambers. A 44% TSS removal pre-treatment will be achieved prior to directing any runoff from the paved areas into the proposed infiltration BMPs TSS removal worksheets documenting compliance are included in Appendix C of this report.

STANDARD 6 – CRITICAL AREAS

Not applicable. The project site is not located within a Critical Area.

STANDARD 7 – REDEVELOPMENTS AND OTHER PROJECTS SUBJECT TO THE STANDARDS ONLY TO THE MAXIMUM EXTENT PRACTICABLE

The new and expanded areas of impervious surfaces meet all standards for new development. For the existing developed portions of the project site, the TSS removal standard is met to the maximum extent practicable as described above.

However, this project provides significant improvement to the existing conditions. Addition of various BMPs will result in a reduction in annual stormwater pollutant loads from the Site and the incorporation of underground infiltration systems will provide significant groundwater recharge and reduce peak runoff from the site.

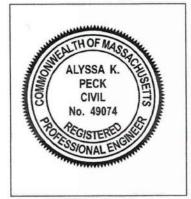
STANDARD 8 – CONSTRUCTION PERIOD POLLUTION PREVENTION AND EROSION AND SEDIMENT CONTROL

A detailed Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan is included in Appendix D of this report. To ensure that the work incorporates the performance standards recommended in the DEP's Stormwater Management Policy, necessary erosion and sedimentation control measures will be utilized during construction. These measures include compost filter tubes, catch basin protection, and a stabilized construction entrance, as depicted on the site plans. In addition, the contractor will be required to produce the SWPPP prior to any land disturbance since this project is resulting in over 1 acre of land disturbance.

STANDARD 9 – OPERATION AND MAINTENANCE PLAN

An Operations and Maintenance Plan is provided in Appendix D of this report. Town of Foxborough DPW will be responsible for the operation and maintenance of the proposed drainage system.

STANDARD 10 – PROHIBITION OF ILLICIT DISCHARGES


Illicit discharges will be prevented on the site through the use of spill/discharge prevention measures, along with good housekeeping and BMPs, and in accordance with the Long-Term Pollution Prevention Plan and O&M plan. A draft copy of the Illicit Discharge Compliance Statement has been developed for this site and is included in Appendix D. A signed Illicit Discharge Compliance Statement is included in Appendix D as well.

REGISTERED PROFESSIONAL ENGINEER'S CERTIFICATION

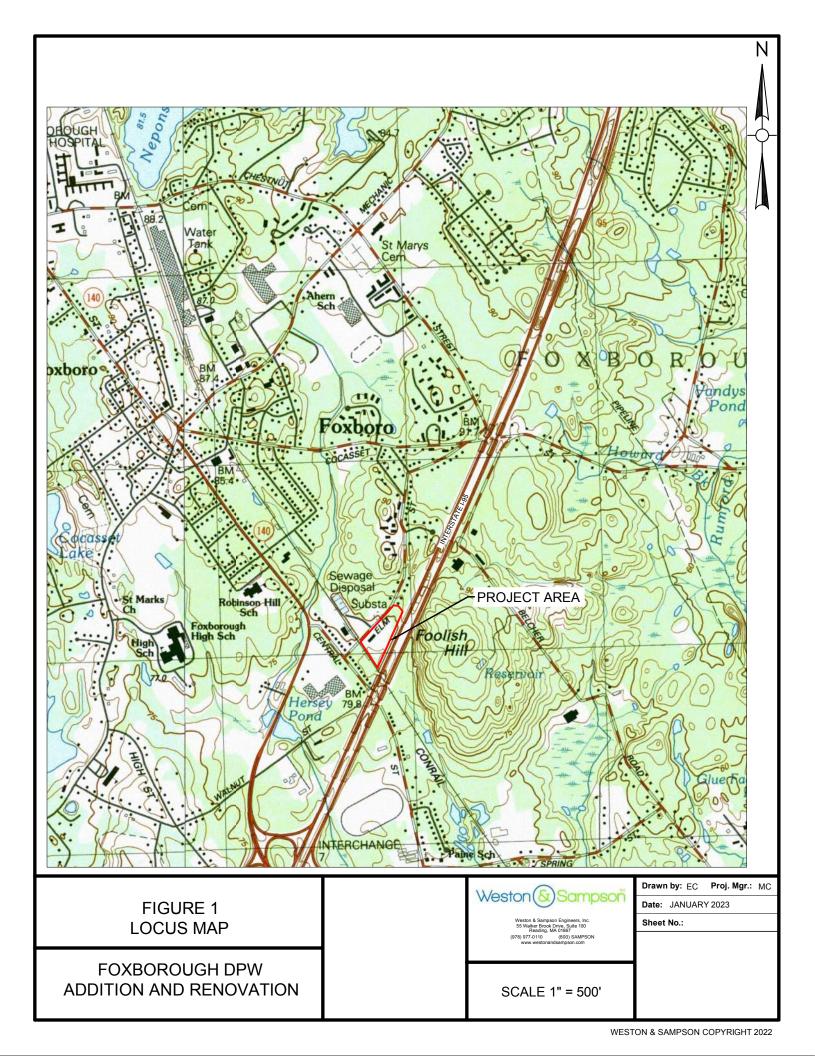
I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-Term Pollution Prevention Plan, Construction Period Erosion and Sedimentation Control Plan, Post-Construction Operation and Maintenance Plan, Illicit Discharge Compliance Statement, and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

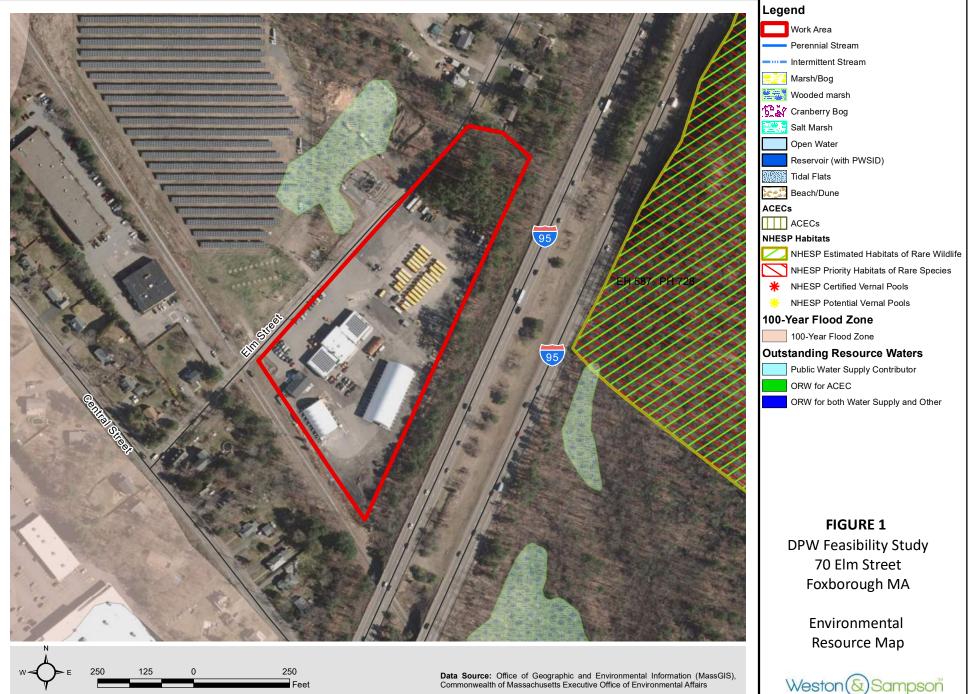
Registered Professional Engineer Block and Signature

Mysselle 1.31.24

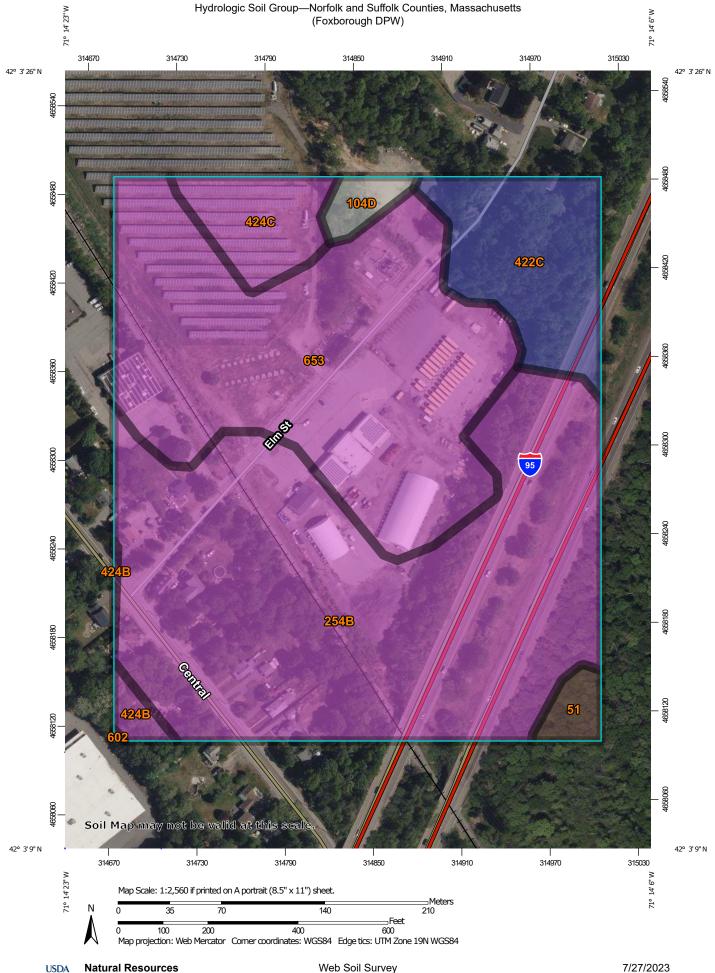
Signature an

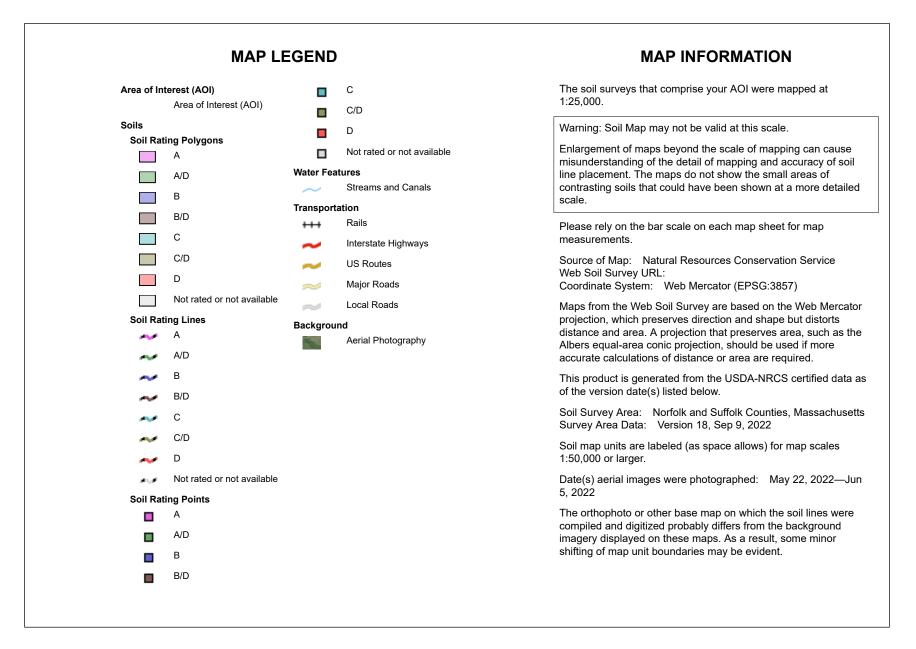
westonandsampson.com




APPENDIX A

.....





Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
51	Swansea muck, 0 to 1 percent slopes	B/D	0.4	1.4%
104D	Hollis-Rock outcrop- Charlton complex, 15 to 35 percent slopes		0.4	1.4%
254B	Merrimac fine sandy loam, 3 to 8 percent slopes	A	15.0	47.8%
422C	Canton fine sandy loam, 8 to 15 percent slopes, extremely stony	В	3.1	9.7%
424B	Canton fine sandy loam, 3 to 8 percent slopes, extremely bouldery	A	0.3	1.0%
424C	Canton fine sandy loam, 8 to 15 percent slopes, extremely bouldery	A	1.4	4.5%
602	Urban land, 0 to 15 percent slopes		0.0	0.0%
653	Udorthents, sandy	A	10.7	34.2%
Totals for Area of Inter	rest	1	31.4	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

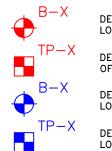
Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher


Weston & Sampson Engineers, Inc. 55 Walkers Brook Drive, Suite 100 Reading, MA 01867 978.532.1900 800.SAMPSON

www.westonandsampson.com

NOTES

- THIS PLAN IS BASED ON A CONCEPTUAL SITE LAYOUT PLAN PREPARED BY WESTON & SAMPSON ENGINEERS, INC. DATED JANUARY 2023.
- 2. FEASIBILITY PHASE BORINGS WERE COMPLETED BY G&M SUBSURFACE OF NORTH DIGHTON, MA ON OCTOBER 7, 2022.
- FEASIBILITY PHASE TEST PITS WERE COMPLETED BY THE DEPARTMENT OF PUBLIC WORKS OF FOXBOROUGH, MA ON OCTOBER 7, 2022.
- DESIGN PHASE BORINGS WERE COMPLETED BY NORTHERN DRILL SERVICE OF NORTHBOROUGH, MA ON AUGUST 10, 2023.
- 3. DESIGN PHASE TEST PITS WERE COMPLETED BY THE DEPARTMENT OF PUBLIC WORKS OF FOXBOROUGH, MA ON AUGUST 16, 2023.
- 4. ALL BORINGS AND TEST PITS WERE OBSERVED BY A WESTON & SAMPSON ENGINEER.
- 5. BORING AND TEST PIT LOCATIONS SHOWN ARE APPROXIMATE AND BASED ON FIELD MEASUREMENTS RELATIVE TO EXISTING SITE FEATURES.

LEGEND


- DESIGNATION AND APPROXIMATE LOCATION OF FEASIBILITY PHASE BORING
- DESIGNATION AND APPROXIMATE LOCATION OF FEASIBILITY PHASE TEST PIT
- DESIGNATION AND APPROXIMATE LOCATION OF DESIGN PHASE BORING
- DESIGNATION AND APPROXIMATE LOCATION OF DESIGN PHASE TEST PIT

		GRAPHIC SCALE			
80	40	0 80 160			
SCALE: 1"=80'					
ORIEN	ΓΑΤΙΟΝ	TITLE			
		Test Pit an Boring Locations			
	PROJECT				
		FOXBOROUGH DPW			
		70 ELM STREET FOXBOROUGH, MA 02035			
DATE	10/2023	FIGURE			
DRWN BY	AC				
CHKD BY	SS				
PRJ. NO.	ENG22-0799				
REV. NO.	-				

	TEST PIT LOG	
PROJECT NAME/NO.	Foxborough Department of Public Works Facility	TEST PIT NUMBER
LOCATION	70 Elm Street, Foxborough MA	TP-3
CLIENT	Town of Foxborough	GROUND SURFACE
CONTRACTOR	Town FOREMAN:	ELEVATION See Site Plan
OBSERVED BY	Alyssa Peck DATE 8/16/23	DEPTH TO GROUNDWATER BELOW
CHECKED BY	DATE	SURFACE 72" b.g.s.
DEPTH BELOW		
GROUND	TEST PIT DIAGRAM AND SOIL I	DESCRIPTION
SURFACE (in.)		
4"	Asphalt	
	FILL	
20"		
	Gravelly coarse sand w/ som	ne cobbles
32"		
60"	Gravelly medium sand, pockets of loam	y sand (firm in place)
	Coarse sand	
96"		
	- End of Exploration	
NOTES:		TEST PIT NUMBER
1.	Redoxomorphic features at 72"	TP-3
		WESTON & SAMPSON
		ENGINEERS, INC.

		TEST	PIT LOG	
PROJECT NAME/NO.	Foxborough Departme	nt of Public	Works Facility	TEST PIT NUMBER
LOCATION	70 Elm Street, Foxboro		· · ·	TP-3
CLIENT	Town of Foxborough			GROUND SURFACE
CONTRACTOR	Town	FOREMA	N:	ELEVATION See Site Plan
OBSERVED BY	Alyssa Peck	DATE	8/16/23	DEPTH TO GROUNDWATER BELOW
CHECKED BY		DATE		SURFACE 72" b.g.s.
DEPTH BELOW				
GROUND	TE	ST PIT DIA	GRAM AND SOIL	DESCRIPTION
SURFACE (in.)				
				<image/>
NOTES:				TEST PIT NUMBER
1. Redoxomo	rphic features at 72"			TP-3
				WESTON & SAMPSON
				ENGINEERS, INC.

		TEST PI	T LOG	
PROJECT NAME/	NO. Foxborough Departme			TEST PIT NUMBER
LOCATION	70 Elm Street, Foxbord		,	TP-4
CLIENT	Town of Foxborough			GROUND SURFACE
CONTRACTOR	Town	FOREMA	N.	ELEVATION See Site Plan
OBSERVED BY	Alyssa Peck	DATE	8/16/23	DEPTH TO GROUNDWATER BELOW
CHECKED BY	Alyssa Feck		0/10/23	
		DATE		SURFACE > 96" b.g.s.
DEPTH BELOW				
GROUND	TE	ST PIT DIA	GRAM AND SOIL	DESCRIPTION
SURFACE (in.)				
			FILL	
96"			End of Evaloration	2
10750		-	End of Exploratio	
NOTES:				
	No redoxomorphic features or stan		observed	TP-4
2.	Fill comprised of stumps, brick, wo	od, rebar.		WESTON & SAMPSON
				ENGINEERS, INC.

		TEST PIT	LOG	
PROJECT NAME/NO.	Foxborough Departme	nt of Public V	Vorks Facility	TEST PIT NUMBER
LOCATION	70 Elm Street, Foxbord		-	TP-5
CLIENT	Town of Foxborough			GROUND SURFACE
CONTRACTOR	Town	FOREMA	N:	ELEVATION See Site Plan
OBSERVED BY	Alyssa Peck	DATE	8/16/23	DEPTH TO GROUNDWATER BELOW
CHECKED BY	<u></u>	DATE	0/10/20	SURFACE 70" b.g.s.
		57.12		
DEPTH BELOW				
GROUND	IE	ST PIT DIA	GRAM AND SOIL	DESCRIPTION
SURFACE (in.)				
2"			Asphalt	
			FILL	
16"				
	Po	ockets of ver	e sand w/ cobbles y fine sandy loam bles, and boulders	
87"			Fuel of Fuele notion	
		-	End of Exploratior	1 -
NOTES:				TEST PIT NUMBER
	Redoxomorphic features at 70"			TP-5
				WESTON & SAMPSON
				ENGINEERS, INC.
				1

			TEST	PIT LOG		
PROJECT NA	ME/NO.	Foxborough Departmer			TE	ST PIT NUMBER
LOCATION	_	70 Elm Street, Foxboro				
CLIENT		Town of Foxborough			GROUND SUR	ACE
CONTRACTO	R -	Town	FOREMA	N:	ELEVATION	See Site Plan
OBSERVED E	3Y 7	Alyssa Peck	DATE	8/16/23	DEPTH TO GRO	DUNDWATER BELOW
CHECKED BY	۲		DATE		SURFACE	70" b.g.s.
DEPTH BELOW GROUND SURFACE (in.)		TE	ST PIT DIAG	GRAM AND SOIL	DESCRIPTION	
NOTES: 1. F	Redoxomorp	bhic features at 70"			TE:	TP-5
	Redoxomorp	bhic features at 70"				

TEST PIT LOG							
PROJECT NAME/NO.	Foxborough Departme	Works Facility	TEST PIT NUMBER				
LOCATION	70 Elm Street, Foxbord	ough MA	TP-6				
CLIENT	Town of Foxborough			GROUND SURFACE			
CONTRACTOR	Town			ELEVATION See Site Plan			
OBSERVED BY	Alyssa Peck	DATE	8/16/23	DEPTH TO GROUNDWATER BELOW			
CHECKED BY	<u></u>	DATE	0/10/20	SURFACE > 105" b.g.s.			
DEPTH BELOW							
GROUND	TEST PIT DIAGRAM AND SOIL DESCRIPTION						
SURFACE (in.)							
46"		FILL					
	Medium brown gravelly fine sandy loam						
58"							
105"		Gravelly coarse sand w/ some cobbles					
100	- End of Exploration -						
NOTES:	1			TEST PIT NUMBER			
	TP-6						
1. No redoxomorphic features or standing water observed TP-6 WESTON & SA							
				ENGINEERS, INC.			

TEST PIT LOG						
PROJECT NAME/NO.	Foxborough Department of Public Works Facility			TEST PIT NUMBER		
LOCATION	70 Elm Street, Foxborough MA			- TP-6		
CLIENT	Town of Foxborough			GROUND SURFACE		
CONTRACTOR	Town FOREMAN:			ELEVATION See Site Plan		
OBSERVED BY	Alyssa Peck	DATE	8/16/23	DEPTH TO GROUNDWATER BELOW		
CHECKED BY		DATE		SURFACE > 105" b.g.s.		
DEPTH BELOW GROUND SURFACE (in.)	TEST PIT DIAGRAM AND SOIL DESCRIPTION					
NOTES:				TEST PIT NUMBER		
1. No redoxo	morphic features or stand	ding water o	observed	TP-6		
	-	WESTON & SAMPSON				
				ENGINEERS, INC.		
				LITOINLLING, INC.		

		TEST PI	T LOG	
PROJECT NAME/I	NO. Foxborough Departme			TEST PIT NUMBER
LOCATION	70 Elm Street, Foxbord	ough MA		TP-7
CLIENT	Town of Foxborough	-		GROUND SURFACE
CONTRACTOR	Town	FOREMA	AN:	ELEVATION See Site Plan
OBSERVED BY	Alyssa Peck	DATE	8/16/23	DEPTH TO GROUNDWATER BELOW
CHECKED BY		DATE		SURFACE > 110" b.g.s.
DEPTH BELOW				DESCRIPTION
	IE	ST PIT DIA	GRAM AND SOIL	DESCRIPTION
SURFACE (in.)				
			FILL	
110"				
110		-	End of Exploratio	on -
NOTES:	I			TEST PIT NUMBER
	No redoxomorphic features or stan	observed	TP-7	
	Fill comprised of wood, plastic, stu			WESTON & SAMPSON
2.	r in comprised of wood, plastic, stu	mps, yidss.		ENGINEERS, INC.
				LINGINEERS, INC.
				11

P:\MA\Foxborough, MA\ENG22-0799 Foxborough DPW Facility\Civil\Stormwater\Test Pits\[Test pit logs.xlsx]TP 3

	TE	ST PIT LOG					
PROJECT NAME/NO.	Foxborough Department of Put		TEST PIT NUMBER				
LOCATION	70 Elm Street, Foxborough MA		TP-7				
CLIENT	Town of Foxborough		GROUND SURFACE				
CONTRACTOR	Town FORE	MAN:	ELEVATION See Site Plan				
OBSERVED BY	Alyssa Peck DATE	8/16/23	DEPTH TO GROUNDWATER BELOW				
CHECKED BY	DATE		SURFACE > 110" b.g.s.				
DEPTH BELOW GROUND SURFACE (in.)	TEST PIT	DIAGRAM AND SOIL	L DESCRIPTION				
NOTES:			TEST PIT NUMBER				
	morphic features or standing wat	er observed	TP-7				
	sed of wood, plastic, stumps, gla		WESTON & SAMPSON				
l '			ENGINEERS, INC.				
			ENGINEERS, INC.				

P:\MA\Foxborough, MA\ENG22-0799 Foxborough DPW Facility\Civil\Stormwater\Test Pits\[Test pit logs.xlsx]TP 3

WSE Project: ENG22-0799

Foxborough DPW Feasibility Study 70 Elm Street, Foxborough, MA

BORING ID: B-101

Page 1 of 1

FORI LOGO CHEO EQU	TRAC EMAN GED I CKED IPMEI HAMN	I: BY:) BY: NT:	S. Can T. Blair H. Flor Geopro	, PE es, PE	ADV AUG SUF COI	VANC GER I PPOF RING	LOCATION: E METHOD: DIAMETER: RT CASING: METHOD: L MATERIAL:	See Attached Figure Rotary Wash Drilling N/A Driven Flush-Joint Casing (4" ID) N/A Drill Cuttings	DATE GRO FINA GRIE	E START: November 7, 2022 TE FINISH: November 7, 2022 DUND EL: 243.0 ± (NAVD88) AL DEPTH: 11.0 ft. D COORDS: N/A D SYSTEM: N/A
DEPTH BELOW GROUND SURFACE [VERTICAL FT.]	SAMPLE TYPE GRAPHIC	1 Completer Completer 1 1 Completer 1 1 Completer 1 1 Completer	N N I CORE RATE / 12 IN. [MIN.]	GEOTECHNICAL TEST DATA ● N-Value, Raw (bpf) ⊠ Organic Content (%) 10 20 30 40 ● Moisture Content (%) ● Plastic Limit, PL (%) < Liquid Limit, LL (%) 25 50 75 100 4		STRATIGRAPHY LOG	Asphalt co thick. [FIL	Asphalt concrete pavement millings. oncrete pavement millings - 6 inches L] ganic soil with gravel (OL) - Soft;	ELEVATION SCALE SHOWN TO NEAREST FT.	REMARKS, OTHER TESTS, AND INSTALLATIONS Note: Values in brackets preceeding a remark indicate depth below ground surface (in feet) corresponding to the remark.
- - 5- - -		S-02 14/24 S-03 13/24	3 11 18 28 19 26 87 51	36	≥ 13 		dark brow plasticity f fine grave FILL] Poorly gr Dense; tal SAND, so plastic fine [COARSE Poorly gr dense; brr GRAVEL, non plasti	ant o black; moist; mostly organic low FINES, little fine to coarse sand, little l; mild organic odor. [ORGANIC aded sand with gravel (SP) - n; moist; mostly medium to coarse ome fine to coarse gravel, trace non es; with cobbles and/or boulders. EGLACIAL DEPOSIT] aded gravel with sand (GP) - Very own; moist; mostly fine to coarse some medium to coarse sand, trace c fines; with cobbles and/or [COARSE GLACIAL DEPOSIT]	- - - 238 -	[2.0 - 11.0] Presence of cobbles and/or boulders in SP and GP layers inferred based on TP-101 observations and slow drilling/casing advancement rate.
		S-04 14/24	80 53 60 120		**************************************				- 233 - 233 - 228 - 228 - 228 - 223 - 223 - 223	[10.5 - 11.0] Possible weathered bedrock. Boring ended upon practical drilling and sampling refusal at depth of 11.0 feet. Groundwater not observed in borehole.

WSE Project: ENG22-0799

Foxborough DPW Feasibility Study 70 Elm Street, Foxborough, MA

BORING ID: B-102

Page 1 of 1

FORE LOGO CHEO EQUI	TRAC EMAN GED E CKED IPMEI HAMN	l: 3Y: BY: NT:	S. Can T. Blair H. Flor Geopro	, PE	ADV AUG SUP COF	/ANC GER I PPOF RING	Location: E Method: Diameter: Rt Casing: Method: L Material:	See Attached Figure Rotary Wash Drilling N/A Driven Flush-Joint Casing (4" II N/A Drill Cuttings	D, G D) FI G	November 7, 2022 DATE START: November 7, 2022 DATE FINISH: November 7, 2022 GROUND EL: 243.0 ± (NAVD88) FINAL DEPTH: 10.8 ft. GRID COORDS: N/A GRID SYSTEM: N/A	
DEPTH BELOW GROUND SURFACE (VERTICAL FT.)	SAMPLE TYPE GRAPHIC	ଦ୍ନ SAMPLE ID NUMBER AND ସ୍ଥାନ RECOVERY RATIO [IN./IN.]	다. SPT BLOWS / 6 IN. (OR) CORE RATE / 12 IN. [MIN.]	GEOTECHNICAL TEST DATA ● N-Value, Raw (bpf) ⊠ Organic Content (%) 10 20 30 40 ● Moisture Content (%) ▶ Plastic Limit, PL (%) < Liquid Limit, LL (%) 25 50 75 100		STRATIGRAPHY LOG	Asphalt c	STRATUM IDENTIFICATION AND DESCRIPTION Asphalt concrete pavement millings oncrete pavement millings - 6 inche		OWN TO NEAREST FT. Note: Values Lemark indic	MARKS, OTHER TESTS, AND INSTALLATIONS s in brackets preceeding a ate depth below ground surface esponding to the remark.
		14/24 S-02 14/24 S-03 9/21 S-04 11/21	11 6 16 33 50 55 30 40 90 50/3 46 41 75	1	>>> •• •• •• •• •• •• •• •• •• •• •• ••		thick. [FIL Sandy or brown to plasticity fine grave Poorly gr dense; br GRAVEL, non plasti			boulders in S based on TF drilling/casin	Presence of cobbles and/or SP and GP layers inferred 2-102 observations and slow g advancement rate.
			50/3							sampling re Groundwate	ed upon practical drilling and fusal at depth of 10.8 feet. er not observed in borehole.

Refer to the attached index sheets for important information about this log including general notes, legends, and guidance on description methods and procedures.

WSE Project: ENG22-0799

Foxborough DPW Feasibility Study 70 Elm Street, Foxborough, MA

BORING ID: B-103

Page 1 of 1

CONTRACTOR: FOREMAN: LOGGED BY: CHECKED BY: EQUIPMENT: SPT HAMMER:	G&M Subsurface S. Canning T. Blair, PE H. Flores, PE Geoprobe 7822DT, Track Mounted Automatic (140-Ib.)	BORING LOCATION:See Attached FigureADVANCE METHOD:Rotary Wash DrillingAUGER DIAMETER:N/ASUPPORT CASING:Driven Flush-Joint Casing (4" ID)CORING METHOD:N/ABACKFILL MATERIAL:Drill Cuttings	DATE START:November 7, 2022DATE FINISH:November 7, 2022GROUND EL:243.0 ± (NAVD88)FINAL DEPTH:8.5 ft.GRID COORDS:N/AGRID SYSTEM:N/A
DEPTH BELOW GROUND SURFACE [VERTICAL FT.] SAMPLE TYPE GRAPHIC SAMPLE ID NUMBER AND RECOVERY RATIO IIIV INU		OOT STRATUM IDENTIFICATION AND DESCRIPTION OOT Hereit Surface: Asphalt concrete pavement millings.	REMARKS, OTHER TESTS, AND INSTALLATIONS
- S-02 - S-02 - S-02 - 15/2 - S-02 - S-02 - S-02 - 6/9 	4 15 22 9 9 22 4 22 259 55 56 1	Asphalt concrete pavement millings - 12 inches thick. [FILL] Organic soil with gravel (OL) - Dark brown; moist; mostly organic low plasticity FINES, little gravel, few fine to medium sand; mild organic odor. [ORGANIC FILL] Well graded gravel with sand (GW) - Very dense; tan; moist; mostly fine to coarse GRAVEL, some medium to coarse sand, trace non plastic fines. [COARSE GLACIAL DEPOSIT]	[4.0] SPT refusal.
- S-04 0/0	50/0		Boring ended upon practical drilling and sampling refusal at depth of 8.5 feet. 233 - 233 - 233 - 233 - 233 - 233 - 233 - 233 - 233 - 234 - 235 - 228 - 228 - 223 - 223

WSE Project: ENG22-0799

Foxborough DPW Feasibility Study 70 Elm Street, Foxborough, MA

BORING ID: B-104

Page 1 of 1

CONTRAC FOREMAN: LOGGED B CHECKED EQUIPMEN SPT HAMM	: BY: BY: IT:	S. Canı T. Blair H. Flore Geopre	ning PE	ADVA AUGI SUPF COR	ANC ER I POR	LOCATION: E METHOD: DIAMETER: T CASING: METHOD: L MATERIAL:	See Attached Figure Rotary Wash Drilling N/A Driven Flush-Joint Ca N/A Drill Cuttings	ising (4" ID)	DATE FINISH: November		N/A
DEPTH BELOW GROUND SURFACE [VERTICAL FT.] SAMPLE TYPE GRAPHIC	SAMPLE ID NUMBER AND RECOVERY RATIO [IN/IN.]	SPT BLOWS / 6 IN. (OR) CORE RATE / 12 IN. [MIN.]	GEOTECHNICAL TEST DATA ● N-Value, Raw (bpf) ⊠ Organic Content (%) 10 20 30 40 ⊕ Moisture Content (%) ▶ Plastic Limit, PL (%) ◄ Liquid Limit, LL (%) 25 50 75 100		STRATIGRAPHY LOG		STRATUM IDENTIFICATION AND DESCRIPTION	nt millings.	ELEVATION SCALE SHOWN TO NEAREST FT.	Note: Value remark indi	REMARKS, OTHER TESTS, AND INSTALLATIONS as in brackets preceeding a cate depth below ground surface responding to the remark.
	S-01 11/24 S-02 0/24 S-03 15/24 S-04 16/24	12 23 11 10 6 1 2 2 2 13 42 71 76 72				Asphalt c thick. [FIL Well grad GM) - De GRAVEL, plastic fin Sandy si non plast non plast	raded gravel with sand (rown; moist; mostly fin , some fine to coarse sand thes. [FILL] iit (ML) - Soft; olive; moist ic FINES, some fine sand raded gravel with sand (rown; moist; mostly fine to , some medium to coarse ic fines. [COARSE GLAC	s - 6 inches sand (GW- ie to coarse d, few non t; mostly (GP) - Very coarse sand, trace	- 238 238 	[2.0] No sa sampler tip retrieve a c unsuccessi nsuccessi Boring ene sampling in	mple recovery. Gravel wedged in upon retrieval. Attempt to asing plug sample was also

W	'es	tor	N (&) Sampson	Foxborough	DPW Feasibility Study	TE	S1	PIT ID: TP-101		
WSE	Proje	ect: El	NG22-0799	70 Elm Stre	eet, Foxborough, MA			Page 1 of 1		
CONTRACTOR:Excavated by Town DPWOPERATOR:A. RouilleLOGGED BY:T. Blair, PECHECKED BY:H. Flores, PEEQUIPMENT:John Deere 310SJ BackhoeBUCKET TYPE:Toothed, 12-in. (2.9 cubic-ft.)				TEST PIT LOCATION: PLAN DIMENSIONS: SEEPAGE REMARKS: CAVING REMARKS: BACKFILL MATERIAL: OTHER COMMENTS:	See Attached Figure Length: 10.0 ft. , Width: 6.5 ft. No Seepage Observed No Caving Observed Excavated Soil		INISH: ND EL: DEPTH COORD	243.0 ± (NAVD88)		
DEPTH BELOW GROUND SURFACE [VERTICAL FT.]	SAMPLE TYPE GRAPHIC	STRATIGRAPHY LOG	Surface: Asphalt concrete pa	ON		ELEVATION SCALE SHOWN TO NEAREST FT.	REMARKS, OTHER TESTS, AND INSTALLATIONS Note: Values in brackets preceeding a remark indicate depth below ground surface (in feet) corresponding to the remark.			
Line String Surface: Asphalt concrete pavement millings. Asphalt concrete pavement millings - 3 inches thick. [FILL] Well graded gravel with silt and sand (GW-GM) - Tan; moist; mostly fine to coarse GRAVEL, some fine to coarse sand, few non plastic fines. [FILL] Sandy organic soil with gravel (OL) - Dark brown to black; moist; mostly organic low plasticity FINES, little fine to coarse sand, little fine gravel; mild organic odor. [ORGANIC FILL] Poorly graded sand with gravel (SP) - Brown; moist; mostly medium to coarse SAND, some fine to coarse gravel, trace non plastic fines; common cobbles, occasional boulde [COARSE GLACIAL DEPOSIT] Wire rope encountered at interface between fill and native soils. Poorly graded gravel with sand (GP) - Brown; moist; mostly fine to coarse GRAVEL, s medium to coarse sand, trace non plastic fines; common cobbles, occasional boulders. [COARSE GLACIAL DEPOSIT] 10 Image: Coarse Gravel with sand (GP) - Brown; moist; mostly fine to coarse GRAVEL, s medium to coarse sand, trace non plastic fines; common cobbles, occasional boulders. [COARSE GLACIAL DEPOSIT]							- 238 - 238 	Excavation ended at depth of 6.5 feet. Groundwater not observed in test pit.		
	TEST PIT PHOTOGRAPHS									

TP-101 - Sidewall View 1

TP-101 - Sidewall View 2

Refer to the attached index sheets for important information about this log including general notes, legends, and guidance on description methods and procedures.

W	es	tor	Sampsoñ	Ū.	DPW Feasibility Study	TE	ST	PIT ID: TP-102		
WSE Project: ENG22-0799 CONTRACTOR: Excavated by Town DPW OPERATOR: A. Rouille LOGGED BY: T. Blair, PE CHECKED BY: H. Flores, PE EQUIPMENT: John Deere 310SJ Backhoe BUCKET TYPE: Toothed, 12-in. (2.9 cubic-ft.)			Excavated by Town DPW A. Rouille T. Blair, PE H. Flores, PE John Deere 310SJ Backhoe	70 EIM Stra TEST PIT LOCATION: PLAN DIMENSIONS: SEEPAGE REMARKS: CAVING REMARKS: BACKFILL MATERIAL: OTHER COMMENTS:	eet, Foxborough, MA See Attached Figure Length: 10.0 ft. , Width: 8.0 ft. No Seepage Observed No Caving Observed Excavated Soil		INISH: ND EL: DEPTH: COORD	Page 1 of 1 November 7, 2022 November 7, 2022 243.0 ± (NAVD88) 6.0 ft. S: N/A M: N/A		
DEPTH BELOW GROUND CONFIGUENT CALET.]	SAMPLE TYPE GRAPHIC	STRATIGRAPHY LOG	plasticity FINES, little fine to co FILL] Poorly graded sand with gra some fine to coarse gravel, tra [COARSE GLACIAL DEPOSI Poorly graded gravel with sa	illings - 3 inches thick. [FII and sand (GW-GM) - Tan sand, few non plastic fine rel (OL) - Dark brown to b boarse sand, little fine grave vel (SP) - Brown; moist; n ice non plastic fines; comr T] and (GP) - Brown; moist; r non plastic fines; occasion	-L] ; moist; mostly fine to coarse		ELEVATION SCALE	REMARKS, OTHER TESTS, AND INSTALLATIONS Note: Values in brackets preceeding a remark indicate depth below ground surface (in feet) corresponding to the remark.		
	TEST PIT PHOTOGRAPHS									

TP-102 - Sidewall View 1

TP-102 - Sidewall View 2

	Weston Sampson Foxborough DPW 70 Elm Street, Foxborough, MA						-	E	BORING ID: B-1 Page 1 of 1	
FORE LOGO CHEO EQUI	eman Ged e Cked Pmei	Northern Drill Service, Inc. BORING LOCATION: See Attached Figure MAN: Tyler Kennedy ADVANCE METHOD: Rotary Wash Drilling ED BY: K. Lennon AUGER DIAMETER: N/A KED BY: A. Chabot SUPPORT CASING: Driven Flush-Joint Casing (3" ID) PMENT: Diedrich D-25, ATV Mounted CORING METHOD: N/A AMMER: Automatic (140-Ib.) BACKFILL MATERIAL: Drill Cuttings and Asphalt Patch		HOD: Rotary Wash Drilling TER: N/A ING: Driven Flush-Joint Casing (3" ID) OD: N/A	DATE ST DATE FI GROUNI FINAL D GRID CO GRID SY	August 10, 2023 D EL: 242.0 ± (NAVD88) EPTH: 19.0 ft. (Refusal) CORDS: N:2845162.7333 / E:727585.4837				
DEPTH BELOW GROUND SURFACE [VERTICAL FT.]	SAMPLE TYPE GRAPHIC	SAMPLE ID NUMBER AND RECOVERY RATIO [IN./IN.]	SPT BLOWS / 6 IN. (OR) CORE RATE / 12 IN. [MIN.]	PID MEASUREMENT, PPM BY VOLUME (HEADSPACE)	GEOTECHNIC, TEST DATA ● N-Value, Raw ☑ Organic Conte 10 20 30 ↓ ↓ ↓ ● Moisture Cont Plastic Limit, PL (◀ Liquid Limit, LL (? 25 50 75	(bpf) nt (%) 40 ent (%) %)	STRATIGRAPHY LOG	STRATUM IDENTIFICATION AND DESCRIPTION	ELEVATION SCALE SHOWN TO NEAREST FT.	REMARKS, OTHER TESTS, AND INSTALLATIONS Note: Values in brackets preceeding a remark indicate depth below ground surface (in feet) corresponding to the
	S	S-1 12/24 S-2 14/24 S-3 10/24	31 42 48 45 42 36 58 100 34 84 80 48	1.1 15.7 1.7		→ 90 94 164		Surface: Asphalt concrete pavement. Asphalt-3 inches thick. Well graded sand with gravel (SW) - Very dense; brown; moist; mostly fine to coarse SAND, little fine gravel, trace non plastic fines. [FILL] Silty sand with gravel (SM) - Very dense; olive; moist; mostly fine to coarse SAND, little fine gravel, little non plastic fines.	ш ол - - - 237 -	remark. Static groundwater level not measured due to drilling method. [4.0 - 6.0] Difficult drilling. [6.0] GC: 16%, SC: 68%, FC: 15%
		S-4 2/6	100	5.5				Well graded sand (SW) - Very dense; brown; wet; mostly fine to coarse SAND, few fine gravel, trace non plastic fines.	232 	[9.0] Rock fragment.
		S-5 0/1	50/1					Well graded sand with gravel (SW) - Very dense; light brown; wet; mostly fine to coarse SAND, some fine gravel, trace non plastic fines.	227 - - -	[14.0] Rock fragment.
20 25 		S-6 0/0	50/0						- 222 - - - - - 217 -	Sampler refusal at 19.0 ft. (exploration ended).
_									_	

Refer to the attached index sheets for important information about this log including general notes, legends, and guidance on description methods and procedures.

			G22-07		Impsoñ	70		kborough DPW reet, Foxborough, MA	B	BOF	RING ID: B	
	TRAC EMAN GED E CKED PMEN	TOR: I: BY: BY: NT:	<u>Northe</u> Tyler K K. Leni A. Cha	rn Drill Cennedy non bot ch D-25	y Ai Ai Si c, ATV Mounted C	ORING LOCA DVANCE ME UGER DIAM UPPORT CA ORING MET ACKFILL MA	ethod: Eter: Sing: 'Hod:	See Attached Figure Rotary Wash Drilling N/A Driven Flush-Joint Casing (3" ID) N/A Monitoring Well Installed		NISH: D EL: EPTH: DORDS:	August 10, 2023 August 10, 2023 243.0 ± (NAVD88) 24.5 ft. N:2845322.4763 / E:727522. NAD83 State Plane (MA)	.2299
DEPTH BELOW GROUND SURFACE [VERTICAL FT.]	SAMPLE TYPE GRAPHIC	SAMPLE ID NUMBER AND RECOVERY RATIO [IN/IN]	SPT BLOWS / 6 IN. (OR) CORE RATE / 12 IN. [MIN.]	PID MEASUREMENT, PPM BY VOLUME (HEADSPACE)	GEOTECHNICAL TEST DATA ● N-Value, Raw (bp ☑ Organic Content (10 20 30 ↓ ↓ ↓ ● Moisture Content ● Plastic Limit, PL (%) ◀ Liquid Limit, LL (%) 25 50 75	%) 40 	S	STRATUM IDENTIFICATION AND DESCRIPTION urface: Asphalt concrete pavement.	ELEVATION SCALE SHOWN TO NEAREST FT.	precee depth b	REMARKS, OTHER TESTS, AND INSTALLATIONS falues in brackets ding a remark indicate elow ground surface (in presponding to the	
		S-1 12/24 S-2 13/24 S-3 9/24 S-4 17/23 S-5 13/24 S-6 10/24	33 22 14 6 3 4 9 3 4 14 21 35 52 74 79 100/5 34 46 70 25 72 45 56	3.5 37.5 1.7 5.7 9.6 1.1	●_13 ●_13 35 ●	→ → → → → → → → → → → → → →	A P D to nc S dd g S m p l S (S fin co S (S S M C S M C S M C S M S M S M S M S M	sphalt- 2 inches thick. oorly graded sand with gravel (SP) - ense; black and brown; moist; mostly fine o coarse SAND, little fine gravel, trace on plastic fines; trace asphalt. andy lean clay (CL) - Stiff; brown and ark brown; moist; mostly medium asticity FINES, little fine sand, trace fine ravel. littly sand (SM) - Dense; brown; moist; tostly fine to coarse SAND, some non astic fines, few fine gravel. Well graded sand with silt and gravel SW-SM) - Very dense; olive; moist; mostly ne to coarse SAND, little fine gravel, few on plastic fines. Well graded sand with silt and gravel SW-SM) - Very dense; brown; moist; toostly fine to coarse SAND, little fine to boarse gravel, few non plastic fines. Well graded sand with gravel (SW) -	- 238		C: 27%, SC: 59%, FC:	
		S-7 5/24 S-8 4/24 S-9 4/6	11 21 15 18 26 24 24 39	9.2 0.4	36		D S fir m m	ense; brown; moist; mostly fine to coarse AND, little fine gravel, trace non plastic res. Iayey sand (SC) - Dense; gray to brown; oist; mostly fine to coarse SAND, little edium plasticity fines, few fine gravel. Iayey sand (SC) - Very dense; brown; oist; mostly fine to medium SAND, some edium plasticity fines, trace fine gravel.	- 228 		Rock fragment. 30: 2%, SC: 66%, FC:	
-									-	-	ation ended at 24.5 ft.	

TEST PIT ID: TP-1 Weston(&)Sampson **Foxborough DPW** WSE Project: ENG22-0799 70 Elm Street, Foxborough, MA CONTRACTOR: Excavated by Town DPW TEST PIT LOCATION: See Attached Figure DATE START: August 16, 2023 OPERATOR: Steve Benney PLAN DIMENSIONS: Length: 8.5 ft., Width: 3.0 ft. DATE FINISH: August 16, 2023 LOGGED BY: K. Lennon SEEPAGE REMARKS: No Seepage Observed GROUND EL: 243.0 ± (NAVD88) CHECKED BY: A. Chabot CAVING REMARKS: No Caving Observed FINAL DEPTH: 5.0 ft. John Deere 310SJ Backhoe EQUIPMENT: BACKFILL MATERIAL: **Excavated Soil** GRID COORDS: N:2845187 ± / E:727453 ± BUCKET TYPE: Toothed, 30-in. (8.5 cubic-ft.) OTHER COMMENTS: GRID SYSTEM: NAD83 State Plane (MA) STRATUM IDENTIFICATION REMARKS, OTHER TESTS, AND DESCRIPTION AND INSTALLATIONS ENT, PPM (ADSPACE) ALE REST FT. DEPTH BELOW GROUND SURFACE [VERTICAL FT.] BRAPHIC LOG

Page 1 of 1

DEPTH BELOW G SURFACE [VERTI SAMPLE TYPE GF	PID MEASUREME BY VOLUME (HEA	STRATIGRAPHY	Surface: Gravel area.	ELEVATION SCAL SHOWN TO NEAF	Note: Values in brackets preceeding a remark indicate depth below ground surface (in feet) corresponding to the remark.
	1.8 0.7 0.8 1.1		Crushed stone- 6 inches thick. Well graded sand with gravel (SW) - Gray; moist; mostly fine to coarse SAND, little fine to coarse gravel, trace non plastic fines. [FILL] Well graded sand with gravel (SW) - Light brown; moist; mostly fine to coarse SAND, little fine to coarse gravel, trace non plastic fines. [FILL] Silt with sand (ML) - Dark brown; moist; mostly low plasticity FINES, little fine to medium sand, trace fine gravel. [SUBSOIL] Well graded sand with gravel (SW) - Light brown; moist; mostly fine to coarse SAND, little fine to coarse gravel, trace non plastic fines. Common cobbles and occasional boulders	- 238	Excavation ended at a depth of 5 feet.

TEST PIT PHOTOGRAPHS

Refer to the attached index sheets for important information about this log including general notes, legends, and guidance on description methods and procedures.

Weston 🙆	Sampson	Fox	borough DPW	TES	ST PIT ID: TP-2
WSE Project: ENG22-079	99	70 Elm Stre	eet, Foxborough, MA		Page 1 of 1
CONTRACTOR:ExcavalOPERATOR:Steve BLOGGED BY:K. LennCHECKED BY:A. ChatEQUIPMENT:John DaBUCKET TYPE:Toothed	Benney Pl non St Doot C/ eere 310SJ Backhoe B/	EST PIT LOCATION: LAN DIMENSIONS: EEPAGE REMARKS: AVING REMARKS: ACKFILL MATERIAL: ITHER COMMENTS:	See Attached Figure Length: 7.2 ft. , Width: 7.2 ft. No Seepage Observed No Caving Observed Excavated Soil		243.0 ± (NAVD88)
DEPTH BELOW GROUND SURFACE [VERTICAL FT] SURFACE [VERTICAL FT] STRATICAPHY LOG STRATIGRAPHY LOG	coarse gravel, little low pl Silty sand with gravel (S organic non plastic fines,	SM) - Brown; moist; mo lasticity fines. [FILL] SM) - Dark brown; mois little fine to coarse gra gravel (SW) - Brown; m , trace non plastic fines	ostly fine to coarse SAND, little fine to st; mostly fine to medium SAND, little vel. [FILL] noist; mostly fine to coarse SAND,	_	REMARKS, OTHER TESTS, AND INSTALLATIONS Note: Values in brackets preceeding a remark indicate depth below ground surface (in feet) corresponding to the remark.

TEST PIT PHOTOGRAPHS

1. Sidewall Overview

2. Excavated Soil Pile

Weston & Samp	SON Fox	borough DPW	TE	ST PIT ID: TP-3		
WSE Project: ENG22-0799	70 Elm Street, Foxborough, MA			Page 1 of 1		
CONTRACTOR:Excavated by Town IIOPERATOR:Steve BenneyLOGGED BY:K. LennonCHECKED BY:A. ChabotEQUIPMENT:John Deere 310SJ BaBUCKET TYPE:Toothed, 30-in. (8.5 cm)	ey PLAN DIMENSIONS: Length: 7.7 ft., Width: 6.0 ft. D SEEPAGE REMARKS: No Seepage Observed G CAVING REMARKS: No Caving Observed F 310SJ Backhoe BACKFILL MATERIAL: Excavated Soil G			DATE START: August 16, 2023 DATE FINISH: August 16, 2023 GROUND EL: 244.0 ± (NAVD88) FINAL DEPTH: 5.0 ft. GRID COORDS: N:2845356 ± / E:727478 ± GRID SYSTEM: NAD83 State Plane (MA)		
G 0.7 Asphal Poorly GRAVE Poorly to coar and tre Well gr Some fi Poorly Poorly Poorly	Asphalt concrete pavement. 3 inches thick. graded gravel with sand (GP) - Black; , little fine to coarse sand. [FILL] graded gravel with silt and sand (GP- e GRAVEL, some fine to coarse sand, f stumps, trace glass. [FILL] aded sand with gravel (SW) - Tan; moi te to coarse gravel. graded sand (SP) - Tan; moist; mostly f us cobbles and common boulders	TION moist; mostly fine to coarse - GM) - Dark brown; moist; mostly fine few non plastic fines; occasional wood ist; mostly medium to coarse SAND,	2399	REMARKS, OTHER TESTS, AND INSTALLATIONS Note: Values in brackets preceeding a remark indicate depth below ground surface (in feet) corresponding to the remark.		

TEST PIT PHOTOGRAPHS

1. Sidewall Overview

2. Excavated Soil Pile

Refer to the attached index sheets for important information about this log including general notes, legends, and guidance on description methods and procedures.

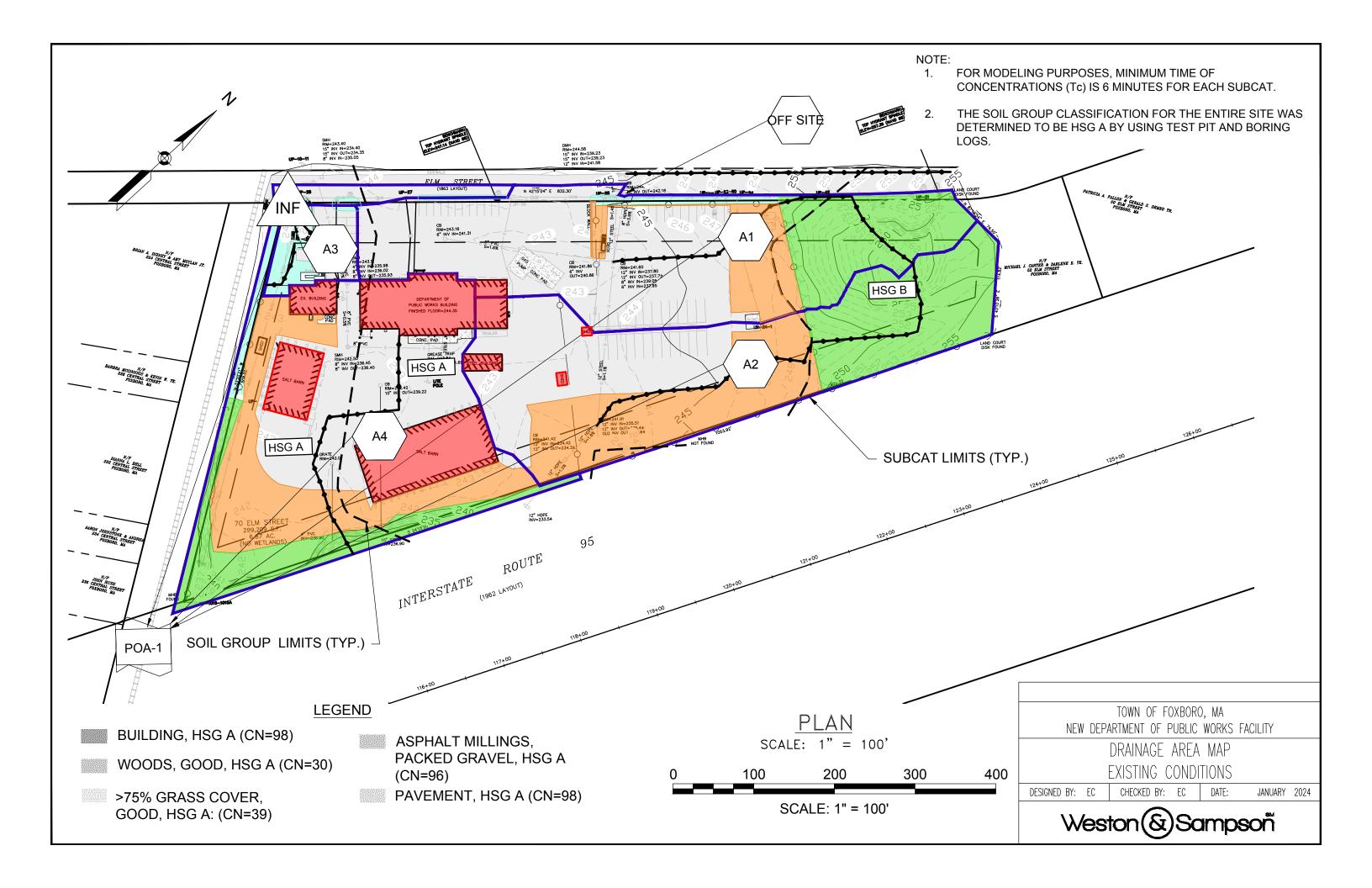
Weston (&) Sampson Foxborough DPW	
WSE Project: ENG22-0799 70 Elm Street, Foxborough, MA	Page 1 of 1
	NISH: August 16, 2023 D EL: 246.0 ± (NAVD88)
Silty sand (SM) - Dark brown; moist; mostly fine to coarse SAND, some non plastic fines, few fine to coarse gravel. [FILL] - - - - - - - - - - - - - - - - - - - - - -	REMARKS, OTHER TESTS, AND INSTALLATIONS Instruction Note: Values in brackets preceeding a remark indicate depth below ground surface (in feet) corresponding to the remark. 241 Excavation ended at a depth of 8 feet.

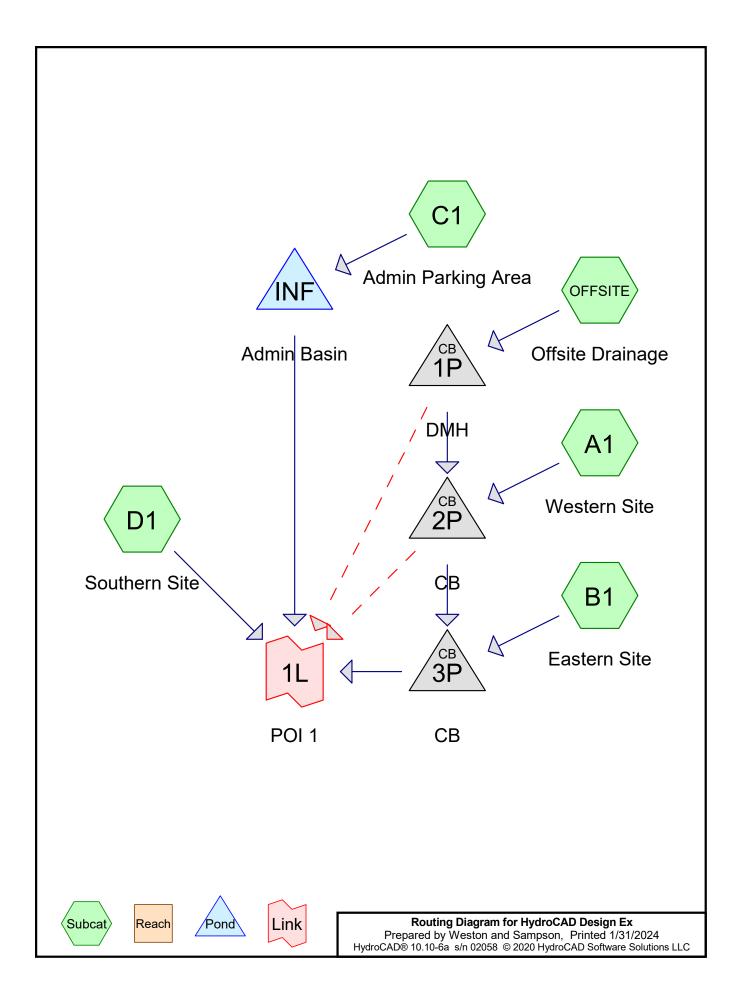
TEST PIT PHOTOGRAPHS

1. Sidewall Overview

2. Excavated Soil Profile

APPENDIX B


.....



FOXBOROUGH DPW FACILITY 70 ELM STREET, FOXBOROL

Pre-Development Conditions vs. Post-Development Conditions											
	Pre-Development Flows						velopment Flo	ws			
Storm Event	2-year storm	10-year storm	25-year storm	100-year storm	Storm Event	2-year storm	10-year storm	25-year storm	100-year storm		
	3.43 in	5.24 in	6.37 in	8.12 in		3.43 in	5.24 in	6.37 in	8.12 in		
Subcatchment/Reach	Inflow (cfs)	Inflow (cfs)	Inflow (cfs)	Inflow (cfs)	Subcatchment/Reach	Inflow (cfs)	Inflow (cfs)	Inflow (cfs)	Inflow (cfs)		
POA 1	18.30	28.54	35	45.13	POI 1	12.00	25.21	31.55	42.03		

Printed 1/31/2024 Page 2

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	2-yr	Type III 24-hr		Default	24.00	1	3.43	2
2	10-yr	Type III 24-hr		Default	24.00	1	5.24	2
3	25-yr	Type III 24-hr		Default	24.00	1	6.37	2
4	100-yr	Type III 24-hr		Default	24.00	1	8.12	2

Rainfall Events Listing (selected events)

Foxborough DPW - Existing Condition

HydroCAD Design Ex Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC

Printed 1/31/2024 Page 3

Area Listing (all nodes)

Area (sq-ft)	CN	Description (subcatchment-numbers)
12,306	39	>75% Grass cover, Good, HSG A (A1, C1, D1)
69,662	96	Gravel surface, HSG A (A1, B1, D1)
2,861	96	Gravel surface, HSG B (A1, B1)
165,113	98	Paved areas & roofs, HSG A (A1, B1, D1)
5,276	98	Paved parking, HSG A (C1)
74,341	98	Paved roads w/curbs & sewers, HSG A (OFFSITE)
47,363	30	Woods, Good, HSG A (A1, B1, D1)
20,734	55	Woods, Good, HSG B (A1, B1)
397,656	85	TOTAL AREA

Foxborough DPW - Existing Condition

Page 4

HydroCAD Design Ex Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC Printed 1/31/2024

Soil Listing (all nodes)

Area (sq-ft)	Soil Group	Subcatchment Numbers
374,061	HSG A	A1, B1, C1, D1, OFFSITE
23,595	HSG B	A1, B1
0	HSG C	
0	HSG D	
0	Other	
397,656		TOTAL AREA

HydroCAD Design Ex Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC Printed 1/31/2024 Page 5

Crodita Covers (dii ficaes)													
HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground							
(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	Cover							
12,306	0	0	0	0	12,306	>75% Grass cover, Good							
69,662	2,861	0	0	0	72,523	Gravel surface							
165,113	0	0	0	0	165,113	Paved areas & roofs							
5,276	0	0	0	0	5,276	Paved parking							
74,341	0	0	0	0	74,341	Paved roads w/curbs & sewers							
47,363	20,734	0	0	0	68,097	Woods, Good							
374,061	23,595	0	0	0	397,656	TOTAL AREA							

Ground Covers (all nodes)

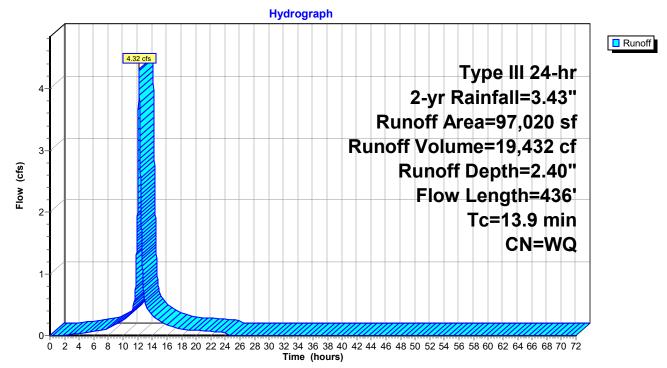
Foxborough DPW - Existing Condition

HydroCAD Design Ex Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC Printed 1/31/2024 Page 6

Pipe Listing (all nodes)

 Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Width (inches)	Diam/Height (inches)	Inside-Fill (inches)
1	1P	239.23	237.80	107.0	0.0134	0.025	0.0	12.0	0.0
2	2P	237.70	235.51	204.0	0.0107	0.025	0.0	12.0	0.0
3	3P	235.40	233.54	134.0	0.0139	0.012	0.0	12.0	0.0

HydroCAD Design Ex Prepared by Weston and Sampson HydroCAD® 10.10-6a_s/n 02058_© 2020 H	Foxborough DPW - Existing Condition <i>Type III 24-hr 2-yr Rainfall=3.43</i> " Printed 1/31/2024 lydroCAD Software Solutions LLC Page 7							
Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method								
Subcatchment A1: Western Site	Runoff Area=97,020 sf 61.46% Impervious Runoff Depth=2.40" Flow Length=436' Tc=13.9 min CN=WQ Runoff=4.32 cfs 19,432 cf							
Subcatchment B1: Eastern Site	Runoff Area=94,033 sf 37.99% Impervious Runoff Depth=2.18" Flow Length=529' Tc=11.3 min CN=WQ Runoff=4.21 cfs 17,068 cf							
Subcatchment C1: Admin Parking Area Flow Length=7								
Subcatchment D1: Southern Site	Runoff Area=122,014 sf 57.18% Impervious Runoff Depth=2.56" Tc=6.0 min CN=WQ Runoff=7.57 cfs 26,032 cf							
Subcatchment OFFSITE: Offsite Draina	nge Runoff Area=74,341 sf 100.00% Impervious Runoff Depth=3.20" Tc=16.0 min CN=98 Runoff=4.25 cfs 19,804 cf							
Pond 1P: DMH Primary=4.02	Peak Elev=244.62' Inflow=4.25 cfs 19,804 cf cfs 19,749 cf Secondary=0.23 cfs 55 cf Outflow=4.25 cfs 19,804 cf							
Pond 2P: CB Primary=2.91 cfs	Peak Elev=241.95' Inflow=8.34 cfs 39,181 cf 32,504 cf Secondary=5.43 cfs 6,677 cf Outflow=8.34 cfs 39,181 cf							
Pond 3P: CB	Peak Elev=240.51' Inflow=7.12 cfs 49,572 cf Outflow=7.12 cfs 49,572 cf							
Pond INF: Admin Basin Discarded	Peak Elev=240.76' Storage=801 cf Inflow=0.40 cfs 1,408 cf I=0.01 cfs 1,408 cf Primary=0.00 cfs 0 cf Outflow=0.01 cfs 1,408 cf							
Link 1L: POI 1	Inflow=18.30 cfs 82,336 cf Primary=18.30 cfs 82,336 cf							
Total Runoff Area = 397,65	6 sf Runoff Volume = 83,743 cf Average Runoff Depth = 2.53"							

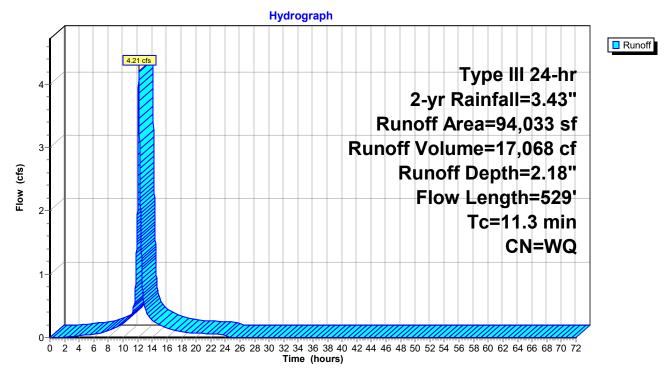

otal Runoff Area = 397,656 sf Runoff Volume = 83,743 cf Average Runoff Depth = 2.53" 38.46% Pervious = 152,926 sf 61.54% Impervious = 244,730 sf

Summary for Subcatchment A1: Western Site

Runoff = 4.32 cfs @ 12.18 hrs, Volume= 19,432 cf, Depth= 2.40" Routed to Pond 2P : CB

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-yr Rainfall=3.43"

	A	rea (sf)	CN I	Description		
*		59,628	98 I	Paved area	s & roofs, H	HSG A
		3,018	39 >	>75% Gras	s cover, Go	bod, HSG A
		1,612	30 \	Noods, Go	od, HSG A	
		20,706	55 \	Noods, Go	od, HSG B	
		10,073		Gravel surfa	ace, HSG A	A
_		1,983	96 (Gravel surfa	ace, HSG E	}
		97,020	١	Neighted A	verage	
		37,392		38.54% Pei	vious Area	
	59,628 61.46% Impervious Area					ea
				•		
	_				a	
	Тс	Length	Slope	-	Capacity	Description
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	
		-		-	• •	Description Sheet Flow,
	<u>(min)</u> 12.2	(feet) 115	(ft/ft) 0.0990	(ft/sec) 0.16	• •	Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43"
	(min)	(feet)	(ft/ft)	(ft/sec) 0.16	• •	Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43" Shallow Concentrated Flow,
	(min) 12.2 0.6	(feet) 115 91	(ft/ft) 0.0990 0.0298	(ft/sec) 0.16 2.59	• •	Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43" Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps
	<u>(min)</u> 12.2	(feet) 115	(ft/ft) 0.0990	(ft/sec) 0.16 2.59	• •	Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43" Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps Shallow Concentrated Flow,
_	(min) 12.2 0.6	(feet) 115 91	(ft/ft) 0.0990 0.0298	(ft/sec) 0.16 2.59	• •	Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43" Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps


Subcatchment A1: Western Site

Summary for Subcatchment B1: Eastern Site

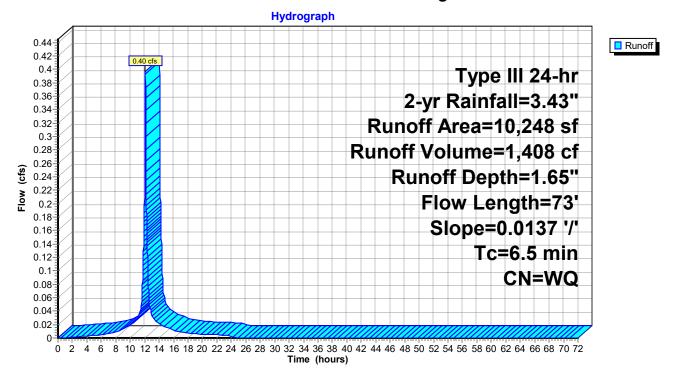
Runoff = 4.21 cfs @ 12.15 hrs, Volume= 17,068 cf, Depth= 2.18" Routed to Pond 3P : CB

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-yr Rainfall=3.43"

	Area (sf)	CN E	Description		
*	35,720	98 F	Paved area	s & roofs, H	ISG A
	29,570	96 C	Gravel surfa	ace, HSG A	N Contraction of the second seco
	878			ace, HSG E	
	27,837		,	od, HSG A	
	28	55 V	Voods, Go	od, HSG B	
	94,033		Veighted A		
	58,313	6	62.01% Per	rvious Area	
	35,720	3	37.99% Imp	pervious Ar	ea
		<u> </u>			
-	Tc Length	Slope	•	Capacity	Description
(m		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
(m			•		Sheet Flow,
<u>m)</u> 8	n) (feet) .7 86	(ft/ft) 0.1304	(ft/sec) 0.17		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43"
<u>m)</u> 8	n) (feet)	(ft/ft)	(ft/sec)		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43" Shallow Concentrated Flow,
<u>(m)</u> 8 (n) (feet) .7 86 .5 132	(ft/ft) 0.1304 0.0401	(ft/sec) 0.17 4.07		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43" Shallow Concentrated Flow, Paved Kv= 20.3 fps
<u>(m)</u> 8 (n) (feet) .7 86	(ft/ft) 0.1304	(ft/sec) 0.17		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43" Shallow Concentrated Flow, Paved Kv= 20.3 fps Shallow Concentrated Flow,
<u>(m)</u> 8 (n) (feet) .7 86 .5 132	(ft/ft) 0.1304 0.0401	(ft/sec) 0.17 4.07		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43" Shallow Concentrated Flow, Paved Kv= 20.3 fps

Subcatchment B1: Eastern Site

Summary for Subcatchment C1: Admin Parking Area


Runoff	=	0.40 cfs @	12.09 hrs,	Volume=	
Routed	d to Pone	d INF : Admin	Basin		

1,408 cf, Depth= 1.65"

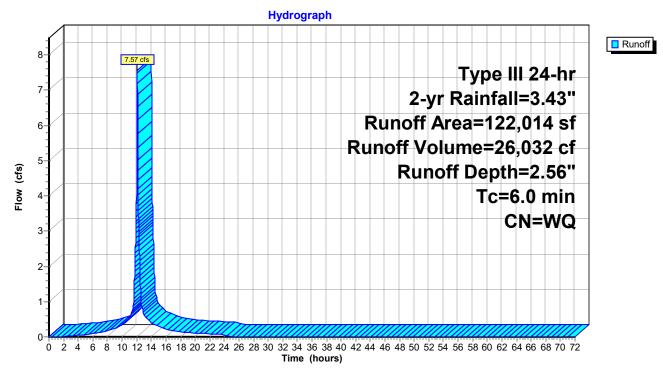
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-yr Rainfall=3.43"

_	A	rea (sf)	CN [Description				
		4,972	39 >75% Grass cover, Good, HSG A					
_		5,276	98 F	Paved park	ing, HSG A			
		10,248	V	Veighted A	verage			
		4,972	4	48.52% Pervious Area				
		5,276	5	51.48% Imp	ervious Are	ea		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
	6.3	50	0.0137	0.13		Sheet Flow,		
	0.2	23	0.0137	2.38		Grass: Short n= 0.150 P2= 3.43" Shallow Concentrated Flow, Paved Kv= 20.3 fps		
	6.5	73	Total					

Subcatchment C1: Admin Parking Area

Summary for Subcatchment D1: Southern Site

Runoff = 7.57 cfs @ 12.08 hrs, Volume= 26,032 cf, Depth= 2.56" Routed to Link 1L : POI 1


Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-yr Rainfall=3.43"

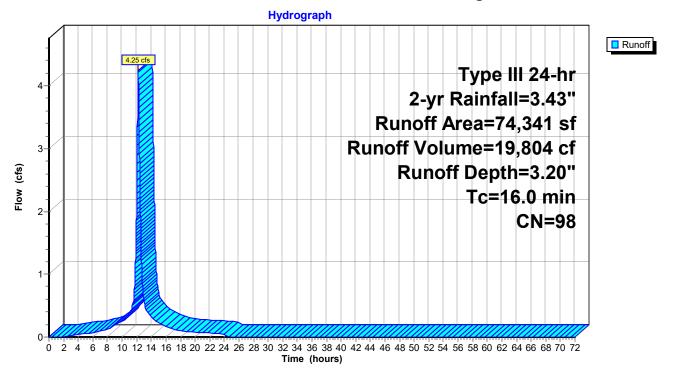
	Area (sf)	CN	Description			
*	69,765	98	Paved area	s & roofs, H	SG A	
	4,316	39	>75% Gras	s cover, Go	od, HSG A	
	17,914	30	Woods, Go	od, HSG A		
	30,019	96	Gravel surfa	ace, HSG A		
	122,014 Weighted Average					
52,249			42.82% Pervious Area			
69,765			57.18% Imp	ervious Ar	a	
- (mi	Гс Length n) (feet)	Slop (ft/	,	Capacity (cfs)	Description	

6.0

Direct Entry,

Subcatchment D1: Southern Site

Summary for Subcatchment OFFSITE: Offsite Drainage


Total subcatchment represents approximately 2,039 LF of ROW (81,560 SF) minus areas that directly contribute to the onsite drainage network.

Runoff	=	4.25 cfs @	12.21 hrs,	Volume=	
Routed	d to Po	ond 1P : DMH			

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-yr Rainfall=3.43"

Area (sf)	CN Description				
74,341	98	Paved road	ls w/curbs &	& sewers, HSG A	
74,341		100.00% In	npervious A	Area	
Tc Length (min) (feet)	Slor (ft/	be Velocity ft) (ft/sec)	Capacity (cfs)	Description	
16.0				Direct Entry,	

Subcatchment OFFSITE: Offsite Drainage

19,804 cf, Depth= 3.20"

HydroCAD Design ExFoxborough DPW - Existing Condition
Type III 24-hrPrepared by Weston and SampsonPrinted 1/31/2024
Printed 1/31/2024HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLCPage 15

Summary for Pond 1P: DMH

Inflow Area = 74,341 sf,100.00% Impervious, Inflow Depth = 3.20" for 2-yr event 4.25 cfs @ 12.21 hrs, Volume= Inflow = 19,804 cf 19,804 cf, Atten= 0%, Lag= 0.0 min Outflow = 4.25 cfs @ 12.21 hrs, Volume= Primary = 4.02 cfs @ 12.21 hrs, Volume= 19,749 cf Routed to Pond 2P : CB Secondarv = 0.23 cfs @ 12.21 hrs, Volume= 55 cf Routed to Link 1L : POI 1 Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 244.62' @ 12.21 hrs Flood Elev= 244.83'

Device	Routing	Invert	Outlet Devices
#1	Primary	239.23'	12.0" Round CMP_Round 12"
			L= 107.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 239.23' / 237.80' S= 0.0134 '/' Cc= 0.900
	0		n= 0.025 Corrugated metal, Flow Area= 0.79 sf
#2	Secondary	244.58	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=4.02 cfs @ 12.21 hrs HW=244.62' (Free Discharge) —1=CMP_Round 12" (Barrel Controls 4.02 cfs @ 5.11 fps)

Secondary OutFlow Max=0.20 cfs @ 12.21 hrs HW=244.62' (Free Discharge) 2=Orifice/Grate (Weir Controls 0.20 cfs @ 0.65 fps)

HydroCAD Design Ex

0.23 cfs

Foxborough DPW - Existing Condition Type III 24-hr 2-yr Rainfall=3.43" Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC Printed 1/31/2024 Page 16

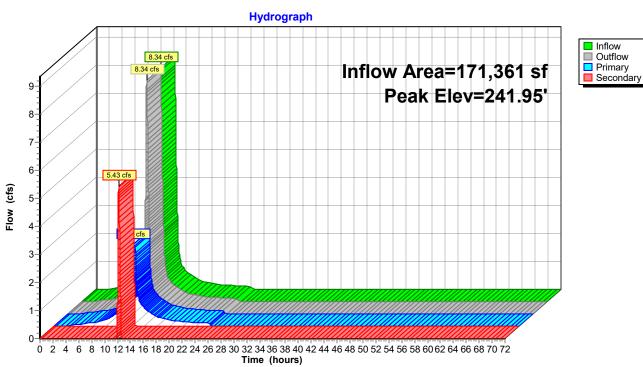
Hydrograph Inflow 4.25 cfs Outflow Primary
 Secondary Inflow Area=74,341 sf 4.25 cfs Peak Elev=244.62' 4.02 4 3 Flow (cfs) 2-1

0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Pond 1P: DMH

Foxborough DPW - Existing Condition Type III 24-hr 2-yr Rainfall=3.43" HydroCAD Design Ex Printed 1/31/2024 Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC Page 17 Summary for Pond 2P: CB [58] Hint: Peaked 0.10' above defined flood level [81] Warning: Exceeded Pond 1P by 1.59' @ 11.88 hrs 171,361 sf, 78.18% Impervious, Inflow Depth = 2.74" for 2-yr event Inflow Area = 8.34 cfs @ 12.18 hrs, Volume= Inflow = 39,181 cf 8.34 cfs @ 12.18 hrs, Volume= 39,181 cf, Atten= 0%, Lag= 0.0 min Outflow = 2.91 cfs @ 12.18 hrs, Volume= Primary 32,504 cf = Routed to Pond 3P : CB

Secondary = 5.43 cfs @ 12.18 hrs, Volume= 6,677 cf Routed to Link 1L : POI 1


Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 241.95' @ 12.18 hrs Flood Elev= 241.85'

Device	Routing	Invert	Outlet Devices
#1	Primary	237.70'	12.0" Round CMP_Round 12"
	-		L= 204.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 237.70' / 235.51' S= 0.0107 '/' Cc= 0.900
			n= 0.025 Corrugated metal, Flow Area= 0.79 sf
#2	Secondary	241.60'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads

Primary OutFlow Max=2.91 cfs @ 12.18 hrs HW=241.95' (Free Discharge) -1=CMP_Round 12" (Barrel Controls 2.91 cfs @ 3.70 fps)

Secondary OutFlow Max=5.42 cfs @ 12.18 hrs HW=241.95' (Free Discharge) 2=Orifice/Grate (Weir Controls 5.42 cfs @ 1.94 fps)

HydroCAD Design Ex

Pond 2P: CB

Summary for Pond 3P: CB

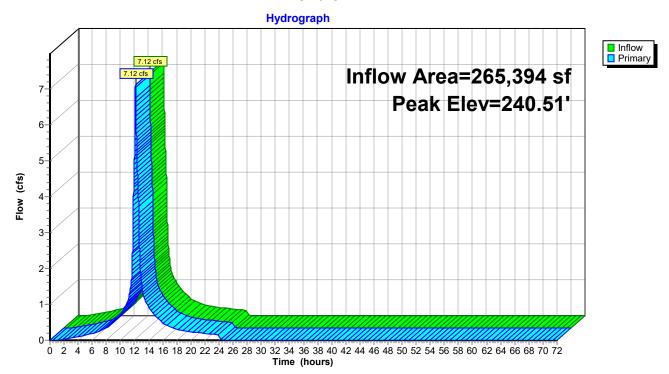
[79] Warning: Submerged Pond 2P Primary device # 1 INLET by 2.81'

 Inflow Area =
 265,394 sf, 63.94% Impervious, Inflow Depth =
 2.24" for 2-yr event

 Inflow =
 7.12 cfs @
 12.15 hrs, Volume=
 49,572 cf

 Outflow =
 7.12 cfs @
 12.15 hrs, Volume=
 49,572 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 7.12 cfs @
 12.15 hrs, Volume=
 49,572 cf, Atten= 0%, Lag= 0.0 min


 Primary =
 7.12 cfs @
 12.15 hrs, Volume=
 49,572 cf

 Routed to Link 1L : POI 1
 1
 1

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 240.51' @ 12.15 hrs Flood Elev= 242.16'

Device	Routing	Invert	Outlet Devices
#1	Primary	235.40'	12.0" Round RCP_Round 12"
			L= 134.0' RCP, rounded edge headwall, Ke= 0.100
			Inlet / Outlet Invert= 235.40' / 233.54' S= 0.0139 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished, Flow Area= 0.79 sf
#2	Primary	241.91'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=7.12 cfs @ 12.15 hrs HW=240.51' (Free Discharge) -1=RCP_Round 12" (Barrel Controls 7.12 cfs @ 9.06 fps) -2=Orifice/Grate (Controls 0.00 cfs)

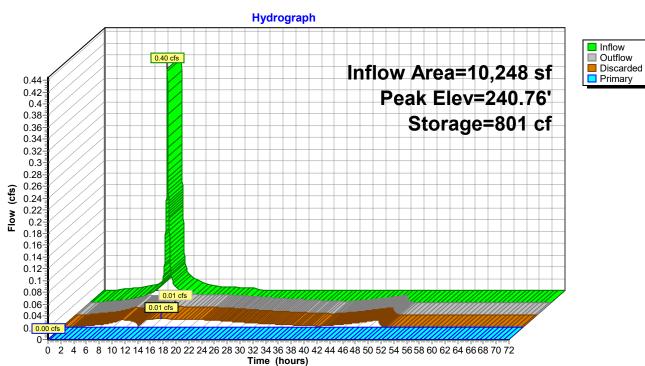
Pond 3P: CB

HydroCAD Design ExFoxborough DPW - Existing Condition
Type III 24-hrPrepared by Weston and SampsonPrinted 1/31/2024
Printed 1/31/2024HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLCPage 20

Summary for Pond INF: Admin Basin

Inflow Area = 10,248 sf, 51.48% Impervious, Inflow Depth = 1.65" for 2-yr event 0.40 cfs @ 12.09 hrs, Volume= Inflow = 1.408 cf 0.01 cfs @ 15.40 hrs, Volume= 1,408 cf, Atten= 96%, Lag= 198.4 min Outflow = Discarded = 0.01 cfs @ 15.40 hrs, Volume= 1,408 cf Primary = 0.00 cfs @ 0.00 hrs, Volume= 0 cf Routed to Link 1L : POI 1

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 240.76' @ 15.40 hrs Surf.Area= 602 sf Storage= 801 cf Flood Elev= 243.00' Surf.Area= 1,045 sf Storage= 2,218 cf

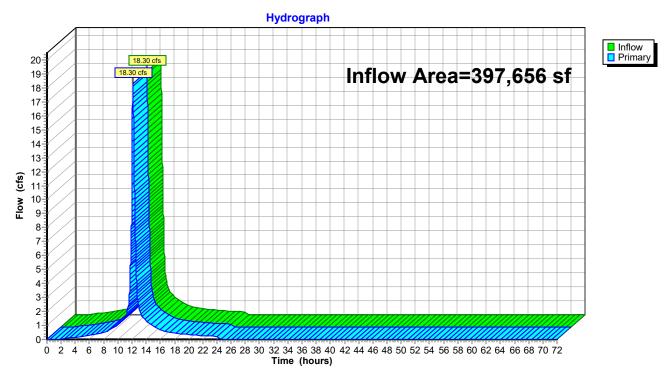

Plug-Flow detention time= 688.6 min calculated for 1,408 cf (100% of inflow) Center-of-Mass det. time= 688.6 min (1,444.9 - 756.3)

Volume	Invert	Avail	.Storage	Storage	Description		
#1	237.00'		2,218 cf	Custom	Stage Data (Irregu	ular) Listed below (Recalc)
Elevatio (fee 237.0 239.0 240.5 242.5	90 90 90 50	urf.Area (sq-ft) 560 84 547 1,045	Perim. (feet) 96.0 39.0 97.0 116.0	Voids (%) 0.0 40.0 100.0 100.0	Inc.Store (cubic-feet) 0 230 423 1,565	Cum.Store (cubic-feet) 0 230 652 2,218	Wet.Area (sq-ft) 560 1,187 1,823 2,209
242.5 <u>Device</u> #1 #2	50 Routing Discarded Primary	,	vert Outle 00' 1.02 45' 29.0' Head 2.50 Coef	et Devices 0 in/hr Ex 1 long x 5 d (feet) 0 3.00 3.5 f. (English	s filtration over Sur 5.0' breadth Broad .20 0.40 0.60 0.8 50 4.00 4.50 5.00	face area -Crested Rectangu 0 1.00 1.20 1.40 0 5.50 2.68 2.68 2.66 2	ular Weir 1.60 1.80 2.00

Discarded OutFlow Max=0.01 cfs @ 15.40 hrs HW=240.76' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.01 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=237.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Foxborough DPW - Existing Condition Type III 24-hr 2-yr Rainfall=3.43" Printed 1/31/2024 HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC Page 21



Pond INF: Admin Basin

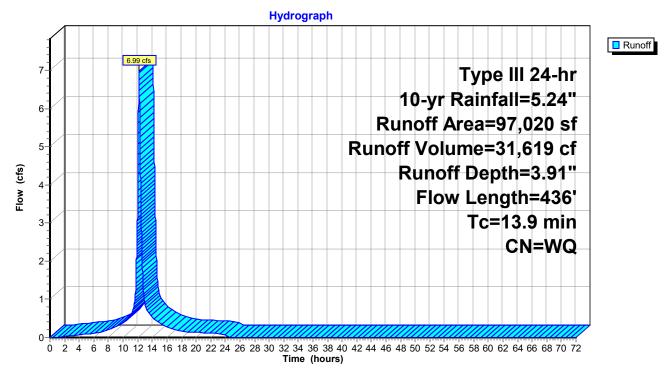
Summary for Link 1L: POI 1

Inflow Area	a =	397,656 sf, 61.54% Impervious, Inflow Depth = 2.48" for 2-yr event	
Inflow	=	18.30 cfs @ 12.13 hrs, Volume= 82,336 cf	
Primary	=	18.30 cfs @ 12.13 hrs, Volume= 82,336 cf, Atten= 0%, Lag= 0.0 min	

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Link 1L: POI 1

HydroCAD Design Ex Prepared by Weston and Sampson HydroCAD® 10.10-6a_s/n 02058 © 2020 HydroCAD Software Solution	Foxborough DPW - Existing Condition <i>Type III 24-hr 10-yr Rainfall=5.24"</i> Printed 1/31/2024 as LLC Page 23
Time span=0.00-72.00 hrs, dt=0.01 hrs Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method - Pond re	S, Weighted-Q
	f 61.46% Impervious Runoff Depth=3.91") min CN=WQ Runoff=6.99 cfs 31,619 cf
	f 37.99% Impervious Runoff Depth=3.45" 8 min CN=WQ Runoff=6.53 cfs 27,032 cf
	f 51.48% Impervious Runoff Depth=2.70" 5 min CN=WQ Runoff=0.61 cfs 2,304 cf
	f 57.18% Impervious Runoff Depth=4.05" min CN=WQ Runoff=11.70 cfs 41,131 cf
Subcatchment OFFSITE: Offsite Drainage Runoff Area=74,341 sf Tc=16	100.00% Impervious Runoff Depth=5.00" .0 min CN=98 Runoff=6.54 cfs 30,993 cf
Pond 1P: DMH Per Primary=4.07 cfs 29,168 cf Secondary=2.4	ak Elev=244.79' Inflow=6.54 cfs 30,993 cf 6 cfs 1,825 cf Outflow=6.54 cfs 30,993 cf
Pond 2P: CB Peal Primary=2.94 cfs 47,106 cf Secondary=8.13 c	k Elev=242.06' Inflow=11.06 cfs 60,787 cf cfs 13,681 cf Outflow=11.06 cfs 60,787 cf
Pond 3P: CB Pea	ak Elev=242.06' Inflow=9.46 cfs 74,138 cf Outflow=9.46 cfs 74,138 cf
	Storage=1,435 cf Inflow=0.61 cfs 2,304 cf y=0.00 cfs 0 cf Outflow=0.02 cfs 2,304 cf
Link 1L: POI 1	Inflow=28.54 cfs 130,775 cf Primary=28.54 cfs 130,775 cf
Total Runoff Area = 397,656 sf Runoff Volume = 13	3,079 cf Average Runoff Depth = 4.02"


al Runoff Area = 397,656 sf Runoff Volume = 133,079 cf Average Runoff Depth = $4.02^{\circ\circ}$ 38.46% Pervious = 152,926 sf 61.54% Impervious = 244,730 sf

Summary for Subcatchment A1: Western Site

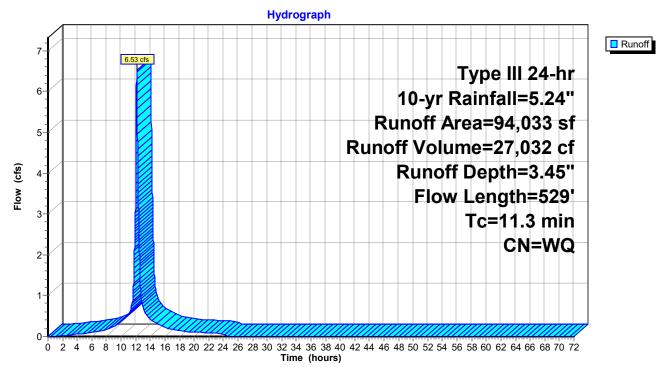
Runoff = 6.99 cfs @ 12.18 hrs, Volume= 31,619 cf, Depth= 3.91" Routed to Pond 2P : CB

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-yr Rainfall=5.24"

	A	rea (sf)	CN I	Description		
*		59,628	98 I	Paved area	s & roofs, H	HSG A
		3,018	39 >	>75% Gras	s cover, Go	bod, HSG A
		1,612	30 \	Noods, Go	od, HSG A	
		20,706	55 \	Noods, Go	od, HSG B	
		10,073		Gravel surfa	ace, HSG A	A
_		1,983	96 (Gravel surfa	ace, HSG E	}
		97,020	١	Neighted A	verage	
		37,392		38.54% Pei	vious Area	
	59,628 61.46% Impervious Are				pervious Ar	ea
				•		
	_				a	
	Тс	Length	Slope	-	Capacity	Description
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	
		-		-	• •	Description Sheet Flow,
	<u>(min)</u> 12.2	(feet) 115	(ft/ft) 0.0990	(ft/sec) 0.16	• •	Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43"
	(min)	(feet)	(ft/ft)	(ft/sec) 0.16	• •	Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43" Shallow Concentrated Flow,
	(min) 12.2 0.6	(feet) 115 91	(ft/ft) 0.0990 0.0298	(ft/sec) 0.16 2.59	• •	Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43" Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps
	<u>(min)</u> 12.2	(feet) 115	(ft/ft) 0.0990	(ft/sec) 0.16 2.59	• •	Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43" Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps Shallow Concentrated Flow,
_	(min) 12.2 0.6	(feet) 115 91	(ft/ft) 0.0990 0.0298	(ft/sec) 0.16 2.59	• •	Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43" Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps

Subcatchment A1: Western Site

Summary for Subcatchment B1: Eastern Site


Runoff = 6.53 cfs @ 12.15 hrs, Volume= 27,032 cf, Depth= 3.45" Routed to Pond 3P : CB

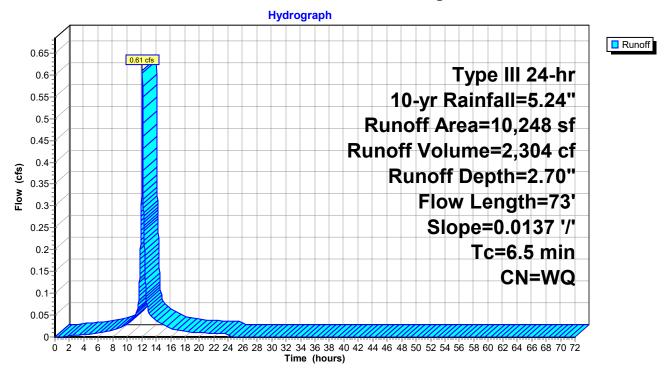
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-yr Rainfall=5.24"

A	Area (sf)	CN E	Description		
*	35,720	98 F	Paved area	s & roofs, H	ISG A
	29,570	96 0	Gravel surfa	ace, HSG A	N Contraction of the second seco
	878	96 0	Gravel surfa	ace, HSG E	3
	27,837			od, HSG A	
	28	55 V	Voods, Go	od, HSG B	
	94,033	V	Veighted A	verage	
	58,313	6	62.01% Per	vious Area	
	35,720	3	97.99% Imp	pervious Are	ea
Тс	0	Slope	Velocity	Capacity	Description
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	0				Description Sheet Flow,
(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43"
(min)	(feet) 86	(ft/ft)	(ft/sec)		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43" Shallow Concentrated Flow,
<u>(min)</u> 8.7 0.5	(feet) 86	(ft/ft) 0.1304 0.0401	(ft/sec) 0.17 4.07		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43" Shallow Concentrated Flow, Paved Kv= 20.3 fps
<u>(min)</u> 8.7	(feet) 86	(ft/ft) 0.1304	(ft/sec) 0.17		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43" Shallow Concentrated Flow, Paved Kv= 20.3 fps Shallow Concentrated Flow,
<u>(min)</u> 8.7 0.5	(feet) 86 132	(ft/ft) 0.1304 0.0401	(ft/sec) 0.17 4.07		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43" Shallow Concentrated Flow, Paved Kv= 20.3 fps

HydroCAD Design ExTypPrepared by Weston and SampsonHydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC

Foxborough DPW - Existing Condition *Type III 24-hr 10-yr Rainfall=5.24"* Printed 1/31/2024 LLC Page 27

Subcatchment B1: Eastern Site


Summary for Subcatchment C1: Admin Parking Area

Runoff = 0.61 cfs @ 12.09 hrs, Volume= Routed to Pond INF : Admin Basin 2,304 cf, Depth= 2.70"

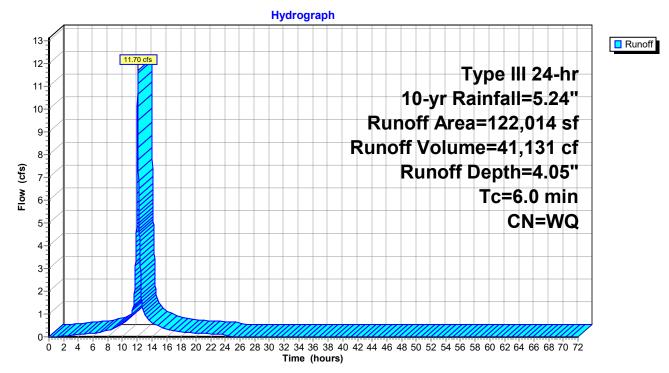
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-yr Rainfall=5.24"

 A	rea (sf)	CN [Description					
	4,972	39 >	39 >75% Grass cover, Good, HSG A					
	5,276	98 F	Paved park	ing, HSG A				
	10,248	١	Neighted A	verage				
	4,972	2	18.52% Pei	vious Area				
	5,276	Ę	51.48% Imp	pervious Are	ea			
 Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.3	50	0.0137	0.13		Sheet Flow,			
 0.2	23	0.0137	2.38		Grass: Short n= 0.150 P2= 3.43" Shallow Concentrated Flow, Paved Kv= 20.3 fps			
 6.5	73	Total						

Subcatchment C1: Admin Parking Area

Summary for Subcatchment D1: Southern Site

Runoff = 11.70 cfs @ 12.08 hrs, Volume= 41,131 cf, Depth= 4.05" Routed to Link 1L : POI 1

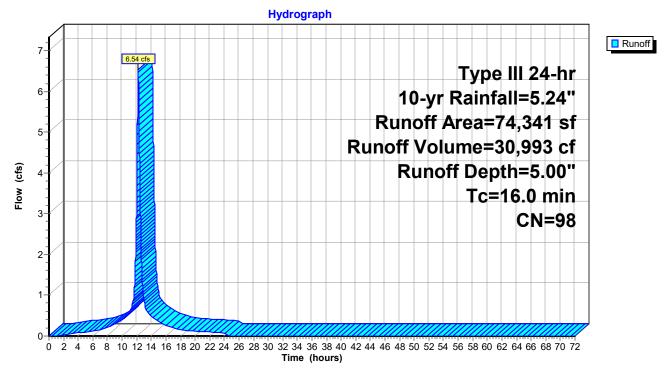

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-yr Rainfall=5.24"

	Area (sf)	CN	Description
*	69,765	98	Paved areas & roofs, HSG A
	4,316	39	>75% Grass cover, Good, HSG A
	17,914	30	Woods, Good, HSG A
	30,019	96	Gravel surface, HSG A
	122,014		Weighted Average
	52,249		42.82% Pervious Area
	69,765		57.18% Impervious Area
(m	Tc Length	Slop	
	<u>nin) (feet)</u>	(ft/	(ft) (ft/sec) (cfs)

6.0

Direct Entry,

Subcatchment D1: Southern Site


Total subcatchment represents approximately 2,039 LF of ROW (81,560 SF) minus areas that directly contribute to the onsite drainage network.

Runoff	=	6.54 cfs @	12.21 hrs,	Volume=	30,993 cf,	Depth= 5.00"
Routed	to Pond	1 1 P : DMH				

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-yr Rainfall=5.24"

Area	(sf) CN	N Description				
74,	341 98	98 Paved roads w/curbs & sewers, HSG A				
74,	341 100.00% Impervious Ar			pervious A	rea	
	0		/elocity (ft/sec)	Capacity (cfs)	Description	
16.0					Direct Entry,	

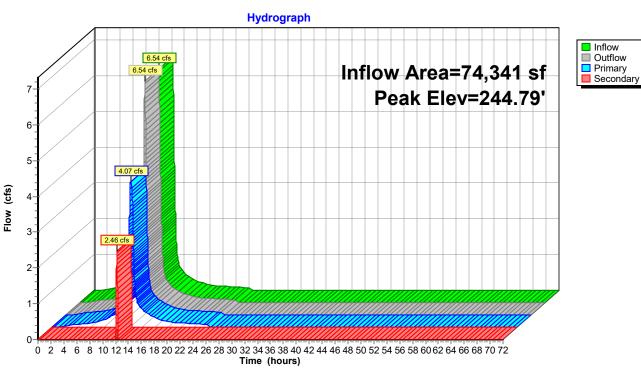
Subcatchment OFFSITE: Offsite Drainage

	Foxborough DPW - Existing Condition
HydroCAD Design Ex	Type III 24-hr 10-yr Rainfall=5.24"
Prepared by Weston and Sampson	Printed 1/31/2024
HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Sol	utions LLC Page 31

Summary for Pond 1P: DMH

74,341 sf,100.00% Impervious, Inflow Depth = 5.00" for 10-yr event Inflow Area = 6.54 cfs @ 12.21 hrs, Volume= Inflow = 30,993 cf 6.54 cfs @ 12.21 hrs, Volume= 30,993 cf, Atten= 0%, Lag= 0.0 min Outflow = Primary = 4.07 cfs @ 12.21 hrs, Volume= 29,168 cf Routed to Pond 2P : CB 2.46 cfs @ 12.21 hrs, Volume= Secondary = 1,825 cf Routed to Link 1L : POI 1

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 244.79' @ 12.21 hrs Flood Elev= 244.83'


Device	Routing	Invert	Outlet Devices
#1	Primary	239.23'	12.0" Round CMP_Round 12"
			L= 107.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 239.23' / 237.80' S= 0.0134 '/' Cc= 0.900
			n= 0.025 Corrugated metal, Flow Area= 0.79 sf
#2	Secondary	244.58'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=4.07 cfs @ 12.21 hrs HW=244.79' (Free Discharge) —1=CMP_Round 12" (Barrel Controls 4.07 cfs @ 5.19 fps)

Secondary OutFlow Max=2.45 cfs @ 12.21 hrs HW=244.79' (Free Discharge) 2=Orifice/Grate (Weir Controls 2.45 cfs @ 1.48 fps)

HydroCAD Design Ex

Foxborough DPW - Existing Condition Type III 24-hr 10-yr Rainfall=5.24" Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC Printed 1/31/2024 Page 32

Pond 1P: DMH

HydroCAD Design Ex Prepared by Weston and Sampson <u>HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solution</u>	Foxborough DPW - Existing Condition <i>Type III 24-hr 10-yr Rainfall=5.24"</i> Printed 1/31/2024 <u>s LLC Page 33</u>							
Summary for Pond 2P: 0	Summary for Pond 2P: CB							
[58] Hint: Peaked 0.21' above defined flood level [81] Warning: Exceeded Pond 1P by 1.59' @ 11.76 hrs								
Inflow Area = 171,361 sf, 78.18% Impervious, Inflow Depth	2							
Inflow = 11.06 cfs @ 12.18 hrs, Volume= 60,78								
	37 cf, Atten= 0%, Lag= 0.0 min							
Primary = 2.94 cfs @ 12.18 hrs, Volume= 47,10 Routed to Pond 3P : CB)6 cf							
Secondary = 8.13 cfs @ 12.18 hrs, Volume= 13,68	31 cf							
Routed to Link 1L : POI 1								
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01	hrs							

Peak Elev= 242.06' @ 12.18 hrs Flood Elev= 241.85'

Device	Routing	Invert	Outlet Devices
#1	Primary	237.70'	12.0" Round CMP_Round 12"
	-		L= 204.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 237.70' / 235.51' S= 0.0107 '/' Cc= 0.900
			n= 0.025 Corrugated metal, Flow Area= 0.79 sf
#2	Secondary	241.60'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads

Primary OutFlow Max=2.94 cfs @ 12.18 hrs HW=242.06' (Free Discharge) —1=CMP_Round 12" (Barrel Controls 2.94 cfs @ 3.74 fps)

Secondary OutFlow Max=8.12 cfs @ 12.18 hrs HW=242.06' (Free Discharge) 2=Orifice/Grate (Weir Controls 8.12 cfs @ 2.21 fps) HydroCAD Design Ex

Foxborough DPW - Existing Condition Type III 24-hr 10-yr Rainfall=5.24" Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC Printed 1/31/2024 Page 34

Hydrograph Inflow 11.06 cfs Outflow Primary
 Secondary Inflow Area=171,361 sf 12-Peak Elev=242.06' 11 10-9-8.13 cfs 8-Flow (cfs) 7. 6 5-4cfs 3-2 1 0-0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Pond 2P: CB

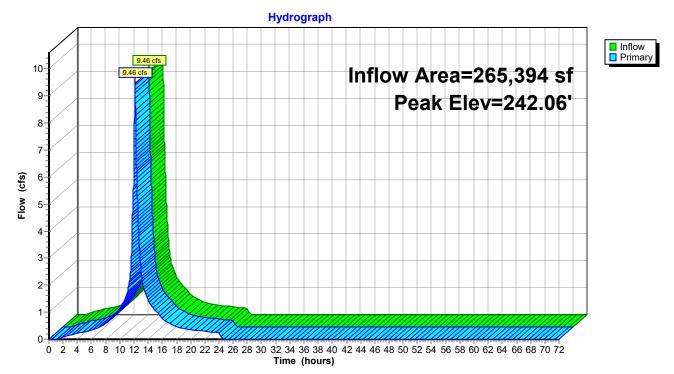
Summary for Pond 3P: CB

[81] Warning: Exceeded Pond 2P by 0.01' @ 12.12 hrs

 Inflow Area =
 265,394 sf, 63.94% Impervious, Inflow Depth =
 3.35" for 10-yr event

 Inflow =
 9.46 cfs @
 12.15 hrs, Volume=
 74,138 cf

 Outflow =
 9.46 cfs @
 12.15 hrs, Volume=
 74,138 cf, Atten= 0%, Lag= 0.0 min


 Primary =
 9.46 cfs @
 12.15 hrs, Volume=
 74,138 cf

 Routed to Link 1L : POI 1
 74,138 cf
 74,138 cf

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 242.06' @ 12.15 hrs Flood Elev= 242.16'

Device	Routing	Invert	Outlet Devices
#1	Primary	235.40'	12.0" Round RCP_Round 12"
			L= 134.0' RCP, rounded edge headwall, Ke= 0.100
			Inlet / Outlet Invert= 235.40' / 233.54' S= 0.0139 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished, Flow Area= 0.79 sf
#2	Primary	241.91'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=9.43 cfs @ 12.15 hrs HW=242.06' (Free Discharge) -1=RCP_Round 12" (Barrel Controls 7.98 cfs @ 10.16 fps) -2=Orifice/Grate (Weir Controls 1.45 cfs @ 1.25 fps)

Pond 3P: CB

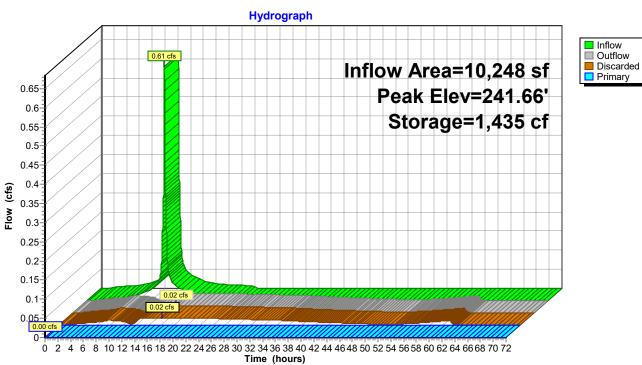
Summary for Pond INF: Admin Basin

10,248 sf, 51.48% Impervious, Inflow Depth = 2.70" for 10-yr event Inflow Area = 0.61 cfs @ 12.09 hrs, Volume= Inflow = 2.304 cf 2,304 cf, Atten= 97%, Lag= 241.6 min Outflow = 0.02 cfs @ 16.12 hrs, Volume= Discarded = 0.02 cfs @ 16.12 hrs, Volume= 2,304 cf Primary = 0.00 cfs @ 0.00 hrs, Volume= 0 cf Routed to Link 1L : POI 1

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 241.66' @ 16.12 hrs Surf.Area= 816 sf Storage= 1,435 cf Flood Elev= 243.00' Surf.Area= 1,045 sf Storage= 2,218 cf

Plug-Flow detention time= 891.9 min calculated for 2,303 cf (100% of inflow) Center-of-Mass det. time= 892.1 min (1,651.0 - 758.9)

Volume	Invert	: Avail	.Storage	Storage	Description		
#1	237.00	I	2,218 cf	Custom	Stage Data (Irregu	lar) Listed below (Recalc)
Elevatio (fee 237.0 239.0 240.5 242.5	et) 00 00 50	urf.Area (sq-ft) 560 84 547 1,045	Perim. (feet) 96.0 39.0 97.0 116.0	Voids (%) 0.0 40.0 100.0 100.0	Inc.Store (cubic-feet) 0 230 423 1,565	Cum.Store (cubic-feet) 0 230 652 2,218	Wet.Area (sq-ft) 560 1,187 1,823 2,209
Device	Routing	Inv	vert Outle	et Device	S		
#1	Discarded	237.	00' 1.02	0 in/hr Ex	xfiltration over Sur	face area	
#2	Primary	242.		-	5.0' breadth Broad	•	
					0.20 0.40 0.60 0.8		1.60 1.80 2.00
					50 4.00 4.50 5.00		
					h) 2.34 2.50 2.70		65 2.65 2.65
			2.65	2.67 2.	66 2.68 2.70 2.74	2.79 2.88	

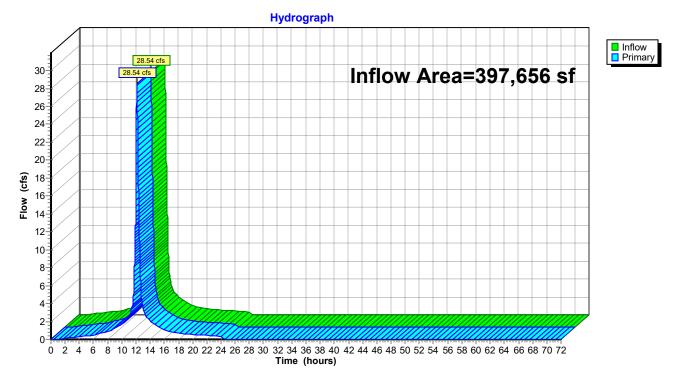

Discarded OutFlow Max=0.02 cfs @ 16.12 hrs HW=241.66' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=237.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

HydroCAD Design Ex

Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC

Foxborough DPW - Existing Condition *Type III 24-hr 10-yr Rainfall=5.24"* Printed 1/31/2024 LLC Page 37



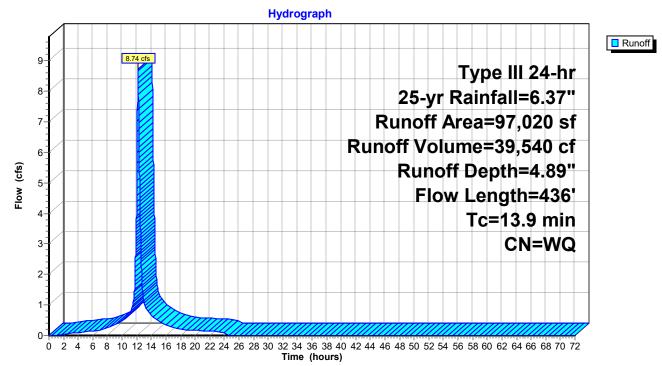
Pond INF: Admin Basin

Summary for Link 1L: POI 1

Inflow Are	a =	397,656 sf, 61.54% Impervious, Inflow Depth = 3.95" for 10-yr event	
Inflow	=	28.54 cfs @ 12.13 hrs, Volume= 130,775 cf	
Primary	=	28.54 cfs @ 12.13 hrs, Volume= 130,775 cf, Atten= 0%, Lag= 0.0 mir	nin

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

HydroCAD Design Ex Prepared by Weston and Sampson HydroCAD® 10.10-6a_s/n 02058 © 2020 HydroCAD Software S	Foxborough DPW - Existing Condition <i>Type III 24-hr 25-yr Rainfall=6.37"</i> Printed 1/31/2024 Solutions LLC Page 39
Time span=0.00-72.00 hrs, dt=0 Runoff by SCS TR-20 method, Ul Reach routing by Stor-Ind+Trans method - I	H=SCS, Weighted-Q
	7,020 sf 61.46% Impervious Runoff Depth=4.89" c=13.9 min CN=WQ Runoff=8.74 cfs 39,540 cf
	4,033 sf 37.99% Impervious Runoff Depth=4.27" Tc=11.3 min CN=WQ Runoff=7.97 cfs 33,484 cf
	0,248 sf 51.48% Impervious Runoff Depth=3.43" Tc=6.5 min CN=WQ Runoff=0.75 cfs 2,926 cf
	2,014 sf 57.18% Impervious Runoff Depth=4.99" Tc=6.0 min CN=WQ Runoff=14.27 cfs 50,769 cf
Subcatchment OFFSITE: Offsite Drainage Runoff Area=74,	341 sf 100.00% Impervious Runoff Depth=6.13" Tc=16.0 min CN=98 Runoff=7.96 cfs 37,985 cf
Pond 1P: DMH Primary=4.10 cfs 34,478 cf Seconda	Peak Elev=244.86' Inflow=7.96 cfs 37,985 cf ary=3.86 cfs 3,507 cf Outflow=7.96 cfs 37,985 cf
Pond 2P: CB Primary=2.95 cfs 55,884 cf Secondary	Peak Elev=242.12' Inflow=12.83 cfs 74,018 cf =9.88 cfs 18,133 cf Outflow=12.83 cfs 74,018 cf
Pond 3P: CB	Peak Elev=242.14' Inflow=10.92 cfs 89,369 cf Outflow=10.92 cfs 89,369 cf
	42.18' Storage=1,896 cf Inflow=0.75 cfs 2,926 cf Primary=0.00 cfs 0 cf Outflow=0.02 cfs 2,926 cf
Link 1L: POI 1	Inflow=35.00 cfs 161,778 cf Primary=35.00 cfs 161,778 cf
Total Runoff Area = 397,656 sf Runoff Volum	e = 164,705 cf Average Runoff Depth = 4.97"

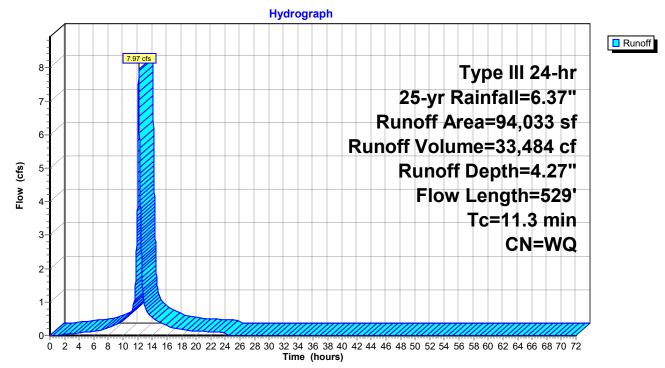

al Runoff Area = 397,656 sf Runoff Volume = 164,705 cf Average Runoff Depth = 4.97° 38.46% Pervious = 152,926 sf 61.54% Impervious = 244,730 sf

Summary for Subcatchment A1: Western Site

Runoff = 8.74 cfs @ 12.18 hrs, Volume= 39,540 cf, Depth= 4.89" Routed to Pond 2P : CB

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-yr Rainfall=6.37"

	A	rea (sf)	CN I	Description						
*		59,628	98 I	98 Paved areas & roofs, HSG A						
		3,018	39 >	9 >75% Grass cover, Good, HSG A						
		1,612	30 \	Noods, Go	od, HSG A					
		20,706	55 \	Noods, Go	od, HSG B					
		10,073		Gravel surfa	ace, HSG A	A				
_		1,983	96 (Gravel surfa	ace, HSG E	}				
		97,020	١	Neighted A	verage					
		37,392		38.54% Pei	vious Area					
59,628 61.46% Impervious Area						ea				
	_				a					
	Тс	Length	Slope	-	Capacity	Description				
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)					
		-		-	• •	Description Sheet Flow,				
	<u>(min)</u> 12.2	(feet) 115	(ft/ft) 0.0990	(ft/sec) 0.16	• •	Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43"				
	(min)	(feet)	(ft/ft)	(ft/sec) 0.16	• •	Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43" Shallow Concentrated Flow,				
	(min) 12.2 0.6	(feet) 115 91	(ft/ft) 0.0990 0.0298	(ft/sec) 0.16 2.59	• •	Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43" Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps				
	<u>(min)</u> 12.2	(feet) 115	(ft/ft) 0.0990	(ft/sec) 0.16 2.59	• •	Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43" Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps Shallow Concentrated Flow,				
_	(min) 12.2 0.6	(feet) 115 91	(ft/ft) 0.0990 0.0298	(ft/sec) 0.16 2.59	• •	Description Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43" Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps				


Subcatchment A1: Western Site

Summary for Subcatchment B1: Eastern Site

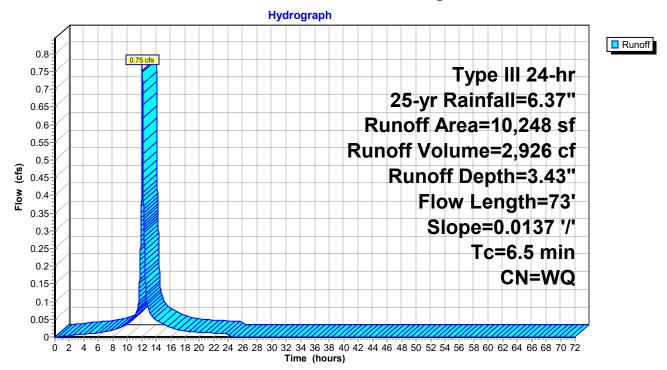
Runoff = 7.97 cfs @ 12.15 hrs, Volume= 33,484 cf, Depth= 4.27" Routed to Pond 3P : CB

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-yr Rainfall=6.37"

	Area (sf)	CN E	Description					
*	35,720	98 F	98 Paved areas & roofs, HSG A					
	29,570	96 C	ravel surface, HSG A					
	878			ace, HSG E				
	27,837		,	od, HSG A				
	28	55 V	Voods, Go	od, HSG B				
	94,033		Veighted A					
	58,313	6	62.01% Per	rvious Area				
	35,720	3	37.99% Imp	pervious Ar	ea			
		<u> </u>		- · ·				
-	Tc Length	Slope	•	Capacity	Description			
(m		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
(m			•		Sheet Flow,			
<u>m)</u> 8	n) (feet) .7 86	(ft/ft) 0.1304	(ft/sec) 0.17		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43"			
<u>m)</u> 8	n) (feet)	(ft/ft)	(ft/sec)		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43" Shallow Concentrated Flow,			
<u>(m)</u> 8 (n) (feet) .7 86 .5 132	(ft/ft) 0.1304 0.0401	(ft/sec) 0.17 4.07		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43" Shallow Concentrated Flow, Paved Kv= 20.3 fps			
<u>(m)</u> 8 (n) (feet) .7 86	(ft/ft) 0.1304	(ft/sec) 0.17		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43" Shallow Concentrated Flow, Paved Kv= 20.3 fps Shallow Concentrated Flow,			
<u>(m)</u> 8 (n) (feet) .7 86 .5 132	(ft/ft) 0.1304 0.0401	(ft/sec) 0.17 4.07		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43" Shallow Concentrated Flow, Paved Kv= 20.3 fps			

Subcatchment B1: Eastern Site

Summary for Subcatchment C1: Admin Parking Area


Runoff	=	0.75 cfs @	12.09 hrs,	Volume=
Route	d to P	ond INF : Admin	Basin	

2,926 cf, Depth= 3.43"

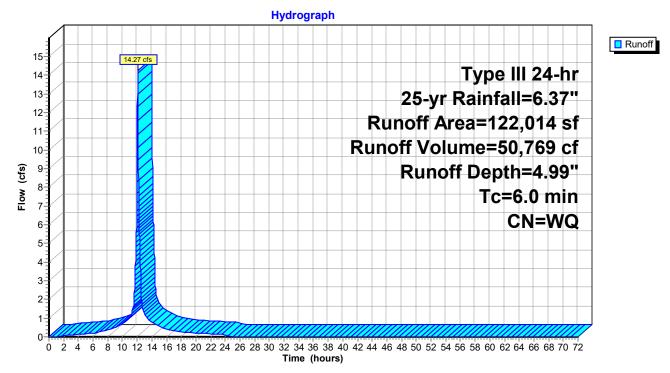
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-yr Rainfall=6.37"

 A	rea (sf)	CN [Description						
	4,972	39 >	39 >75% Grass cover, Good, HSG A						
	5,276	98 F	Paved park	ing, HSG A					
	10,248	١	Neighted A	verage					
	4,972	2	18.52% Pei	vious Area					
	5,276	Ę	51.48% Imp	pervious Are	ea				
 Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.3	50	0.0137	0.13		Sheet Flow,				
 0.2	23	0.0137	2.38		Grass: Short n= 0.150 P2= 3.43" Shallow Concentrated Flow, Paved Kv= 20.3 fps				
 6.5	73	Total							

Subcatchment C1: Admin Parking Area

Summary for Subcatchment D1: Southern Site

Runoff = 14.27 cfs @ 12.08 hrs, Volume= 50,769 cf, Depth= 4.99" Routed to Link 1L : POI 1


Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-yr Rainfall=6.37"

	Area (sf)	CN	Description						
*	69,765	98	Paved areas & roofs, HSG A						
	4,316	39	>75% Grass cover, Good, HSG A						
	17,914	30	Woods, Good, HSG A						
	30,019	96	Gravel surface, HSG A						
	122,014		Weighted Average						
	52,249		42.82% Pervious Area						
	69,765		57.18% Impervious Area						
	Tc Length	Slop	pe Velocity Capacity Description						
(r	min) (feet)	(ft/	(ft) (ft/sec) (cfs)						

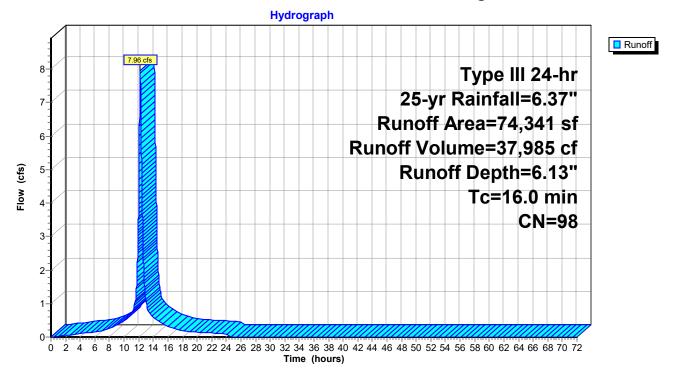
6.0

Direct Entry,

Subcatchment D1: Southern Site

Summary for Subcatchment OFFSITE: Offsite Drainage

Total subcatchment represents approximately 2,039 LF of ROW (81,560 SF) minus areas that directly contribute to the onsite drainage network.


Runoff	=	7.96 cfs @	12.21 hrs,	Volume=	37,985 c	f, Depth= 6.13"
Routed	to Pond	1P : DMH				

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-yr Rainfall=6.37"

Area (s	f) CN	Description	l	
74,34	1 98	Paved road	ls w/curbs &	& sewers, HSG A
74,34	1	100.00% In	npervious A	vrea
Tc Lene (min) (fe	gth Slo et) (ft/		Capacity (cfs)	Description
16.0				Direct Entry,

Direct Entry,

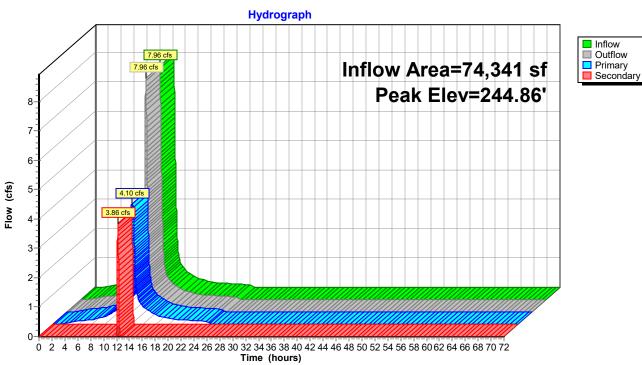
Subcatchment OFFSITE: Offsite Drainage

Summary for Pond 1P: DMH

[58] Hint: Peaked 0.03' above defined flood level

Inflow Area =	74,341 sf	,100.00% Impervious,	Inflow Depth = 6.13" for 25-yr event		
Inflow =	7.96 cfs @	12.21 hrs, Volume=	37,985 cf		
Outflow =	7.96 cfs @	12.21 hrs, Volume=	37,985 cf, Atten= 0%, Lag= 0.0 min		
Primary =	4.10 cfs @	12.21 hrs, Volume=	34,478 cf		
Routed to Pond 2P : CB					
Secondary =	3.86 cfs @	12.21 hrs, Volume=	3,507 cf		
Routed to Link	1L : POI 1				

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 244.86' @ 12.21 hrs Flood Elev= 244.83'


Device	Routing	Invert	Outlet Devices
#1	Primary	239.23'	12.0" Round CMP_Round 12"
			L= 107.0' CMP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 239.23' / 237.80' S= 0.0134 '/' Cc= 0.900
	o	044 501	n= 0.025 Corrugated metal, Flow Area= 0.79 sf
#2	Secondary	244.58	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=4.10 cfs @ 12.21 hrs HW=244.86' (Free Discharge) -1=CMP_Round 12" (Barrel Controls 4.10 cfs @ 5.22 fps)

Secondary OutFlow Max=3.84 cfs @ 12.21 hrs HW=244.86' (Free Discharge) 2=Orifice/Grate (Weir Controls 3.84 cfs @ 1.73 fps)

HydroCAD Design Ex

Foxborough DPW - Existing Condition Type III 24-hr 25-yr Rainfall=6.37" Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC Printed 1/31/2024 Page 48

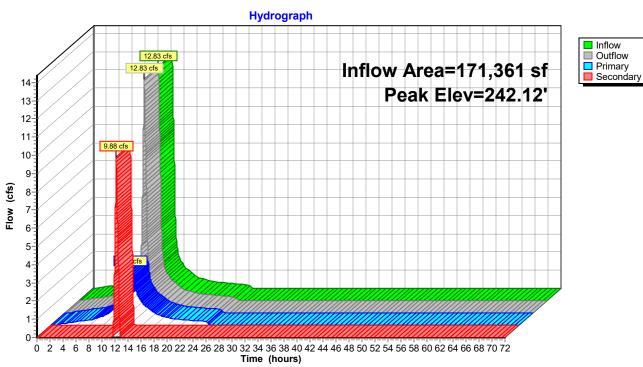
Pond 1P: DMH

Summary for Pond 2P: CB

[58] Hint: Peaked 0.27' above defined flood level [81] Warning: Exceeded Pond 1P by 1.59' @ 11.71 hrs

171,361 sf, 78.18% Impervious, Inflow Depth = 5.18" for 25-yr event Inflow Area = 12.83 cfs @ 12.18 hrs, Volume= Inflow = 74,018 cf 12.83 cfs @ 12.18 hrs, Volume= 74,018 cf, Atten= 0%, Lag= 0.0 min Outflow = 2.95 cfs @ 12.18 hrs, Volume= Primary 55,884 cf = Routed to Pond 3P : CB Secondary = 9.88 cfs @ 12.18 hrs, Volume= 18,133 cf Routed to Link 1L : POI 1

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 242.12' @ 12.18 hrs Flood Elev= 241.85'


Device	Routing	Invert	Outlet Devices
#1	Primary	237.70'	12.0" Round CMP_Round 12"
	-		L= 204.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 237.70' / 235.51' S= 0.0107 '/' Cc= 0.900
			n= 0.025 Corrugated metal, Flow Area= 0.79 sf
#2	Secondary	241.60'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads

Primary OutFlow Max=2.95 cfs @ 12.18 hrs HW=242.12' (Free Discharge) -1=CMP_Round 12" (Barrel Controls 2.95 cfs @ 3.76 fps)

Secondary OutFlow Max=9.87 cfs @ 12.18 hrs HW=242.12' (Free Discharge) 2=Orifice/Grate (Weir Controls 9.87 cfs @ 2.36 fps)

HydroCAD Design Ex

Foxborough DPW - Existing Condition Type III 24-hr 25-yr Rainfall=6.37" Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC Printed 1/31/2024 Page 50

Pond 2P: CB

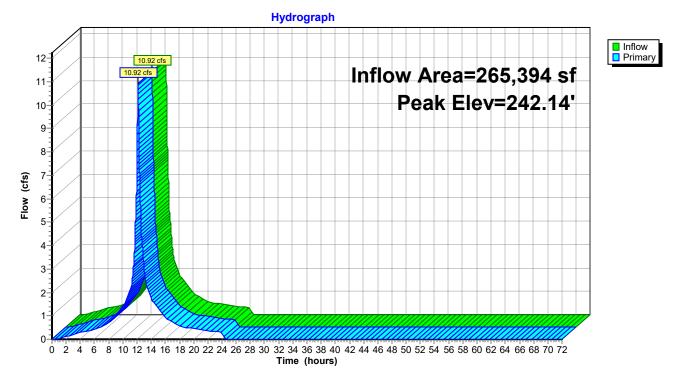
Summary for Pond 3P: CB

[81] Warning: Exceeded Pond 2P by 0.04' @ 12.11 hrs

 Inflow Area =
 265,394 sf, 63.94% Impervious, Inflow Depth = 4.04" for 25-yr event

 Inflow =
 10.92 cfs @
 12.15 hrs, Volume=
 89,369 cf

 Outflow =
 10.92 cfs @
 12.15 hrs, Volume=
 89,369 cf, Atten= 0%, Lag= 0.0 min


 Primary =
 10.92 cfs @
 12.15 hrs, Volume=
 89,369 cf

 Routed to Link 1L : POI 1
 89,369 cf

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 242.14' @ 12.15 hrs Flood Elev= 242.16'

Device	Routing	Invert	Outlet Devices
#1	Primary	235.40'	12.0" Round RCP_Round 12"
			L= 134.0' RCP, rounded edge headwall, Ke= 0.100
			Inlet / Outlet Invert= 235.40' / 233.54' S= 0.0139 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished, Flow Area= 0.79 sf
#2	Primary	241.91'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=10.89 cfs @ 12.15 hrs HW=242.14' (Free Discharge) -1=RCP_Round 12" (Barrel Controls 8.03 cfs @ 10.22 fps) -2=Orifice/Grate (Weir Controls 2.87 cfs @ 1.56 fps)

Pond 3P: CB

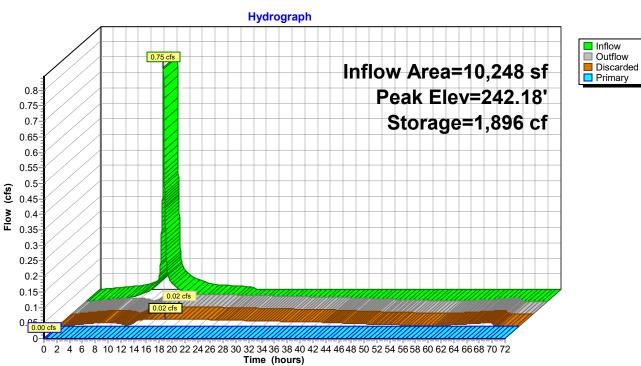
Summary for Pond INF: Admin Basin

Inflow Area = 10,248 sf, 51.48% Impervious, Inflow Depth = 3.43" for 25-yr event 0.75 cfs @ 12.09 hrs, Volume= Inflow = 2.926 cf 0.02 cfs @ 16.66 hrs, Volume= 2,926 cf, Atten= 97%, Lag= 274.2 min Outflow = Discarded = 0.02 cfs @ 16.66 hrs, Volume= 2,926 cf Primary = 0.00 cfs @ 0.00 hrs, Volume= 0 cf Routed to Link 1L : POI 1

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 242.18' @ 16.66 hrs Surf.Area= 954 sf Storage= 1,896 cf Flood Elev= 243.00' Surf.Area= 1,045 sf Storage= 2,218 cf

Plug-Flow detention time= 1,011.8 min calculated for 2,926 cf (100% of inflow) Center-of-Mass det. time= 1,012.0 min (1,772.8 - 760.7)

Volume	Invert	: Avai	.Storage	Storage	Description		
#1	237.00'	I	2,218 cf	Custom	Stage Data (Irreg	ular) Listed below	(Recalc)
Elevatio (fee 237.0 239.0 240.5 242.5	t) 0 0 0	urf.Area (sq-ft) 560 84 547 1,045	Perim. (feet) 96.0 39.0 97.0 116.0	Voids (%) 0.0 40.0 100.0 100.0	Inc.Store (cubic-feet) 0 230 423 1,565	Cum.Store (cubic-feet) 0 230 652 2,218	Wet.Area (sq-ft) 560 1,187 1,823 2,209
242.5 <u>Device</u> #1 #2	0 <u>Routing</u> Discarded Primary	,	vert Outle .00' 1.02 .45' 29.0 Head 2.50 Coef	et Device 0 in/hr Ex 1 long x { d (feet) 0 3.00 3.5 f. (English		face area -Crested Rectang 0 1.00 1.20 1.40 0 5.50 2.68 2.68 2.66 2	ular Weir 1.60 1.80 2.00

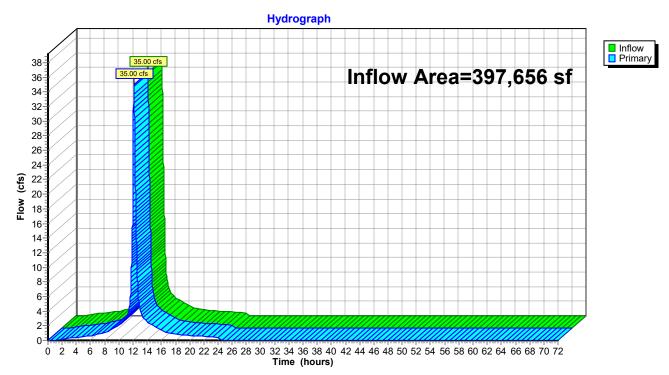

Discarded OutFlow Max=0.02 cfs @ 16.66 hrs HW=242.18' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.02 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=237.00' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

HydroCAD Design Ex

Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC

Foxborough DPW - Existing Condition *Type III 24-hr 25-yr Rainfall=6.37"* Printed 1/31/2024 LLC Page 53



Pond INF: Admin Basin

Summary for Link 1L: POI 1

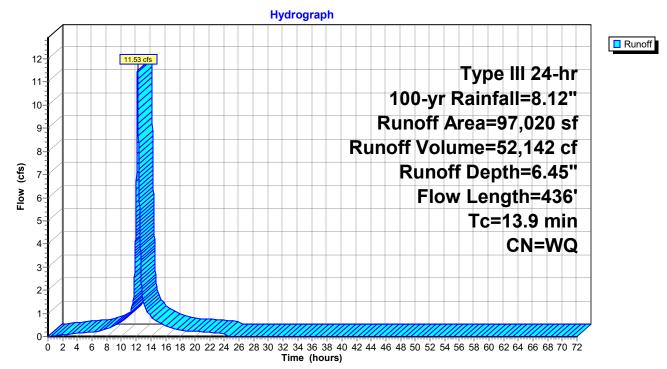
Inflow Area	a =	397,656 sf, 61.54% Imper	rvious, Inflow Depth = 4.	88" for 25-yr event
Inflow	=	35.00 cfs @ 12.13 hrs, Vol	ume= 161,778 cf	
Primary	=	35.00 cfs @ 12.13 hrs, Vol	ume= 161,778 cf,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Link 1L: POI 1

HydroCAD Design Ex Prepared by Weston and Sampson <u>HydroCAD® 10.10-6a_s/n 02058_© 2020 HydroCAD Software Solution</u>	Foxborough DPW - Existing Condition <i>Type III 24-hr 100-yr Rainfall=8.12"</i> Printed 1/31/2024 ns LLC Page 55
Time span=0.00-72.00 hrs, dt=0.01 hrs Runoff by SCS TR-20 method, UH=SC Reach routing by Stor-Ind+Trans method - Pond r	S, Weighted-Q
	sf 61.46% Impervious Runoff Depth=6.45" min CN=WQ Runoff=11.53 cfs 52,142 cf
	sf 37.99% Impervious Runoff Depth=5.60" min CN=WQ Runoff=10.19 cfs 43,883 cf
	sf 51.48% Impervious Runoff Depth=4.64" 5.5 min CN=WQ Runoff=1.04 cfs 3,965 cf
	of 57.18% Impervious Runoff Depth=6.49" min CN=WQ Runoff=18.31 cfs 66,026 cf
Subcatchment OFFSITE: Offsite Drainage Runoff Area=74,341 sf Tc=16.0	100.00% Impervious Runoff Depth=7.88" 0 min CN=98 Runoff=10.16 cfs 48,818 cf
Pond 1P: DMH Pea Primary=4.13 cfs 42,172 cf Secondary=6.03	ak Elev=244.96' Inflow=10.16 cfs 48,818 cf 3 cfs 6,646 cf Outflow=10.16 cfs 48,818 cf
Pea Pea Pea Pea Pea Primary=2.98 cfs 69,004 cf Secondary=12.68	ak Elev=242.22' Inflow=15.66 cfs 94,314 cf cfs 25,310 cf Outflow=15.66 cfs 94,314 cf
Pond 3P: CB Peak	Elev=242.24' Inflow=13.17 cfs 112,887 cf Outflow=13.17 cfs 112,887 cf
	Storage=2,179 cf Inflow=1.04 cfs 3,965 cf =0.11 cfs 563 cf Outflow=0.14 cfs 3,955 cf
Link 1L: POI 1	Inflow=45.13 cfs 211,431 cf Primary=45.13 cfs 211,431 cf
Total Runoff Area = 397,656 sf Runoff Volume = 21	4,833 cf Average Runoff Depth = $6.48"$

38.46% Pervious = 152,926 sf 61.54% Impervious = 244,730 sf


Summary for Subcatchment A1: Western Site

Runoff = 11.53 cfs @ 12.18 hrs, Volume= 52,142 cf, Depth= 6.45" Routed to Pond 2P : CB

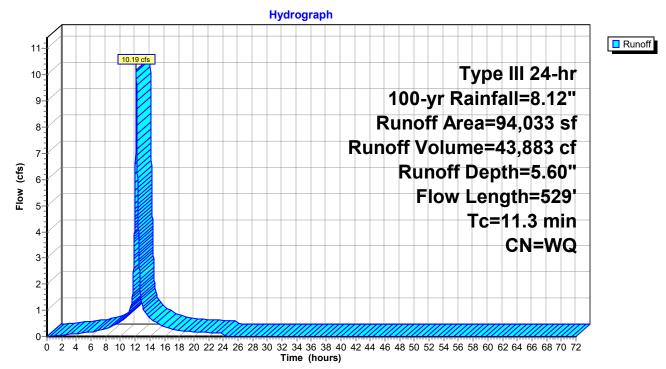
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-yr Rainfall=8.12"

_	A	rea (sf)	CN I	Description		
*		59,628	98 I	Paved area	s & roofs, H	HSG A
		3,018	39 >	>75% Gras	s cover, Go	bod, HSG A
		1,612	30 \	Noods, Go	od, HSG A	
		20,706	55 \	Noods, Go	od, HSG B	
		10,073			ace, HSG A	
_		1,983	96 (Gravel surfa	ace, HSG E	}
	97,020 Weighted Average					
		37,392	÷	38.54% Per	vious Area	
		59,628	6	61.46% Imp	pervious Are	ea
	_					
	Tc	Length	Slope	-	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	12.2	115	0.0990	0.16		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.43"
	0.6	91	0.0298	2.59		Shallow Concentrated Flow,
						Creased Waterway, Ky- 45.0 free
						Grassed Waterway Kv= 15.0 fps
	1.1	230	0.0310	3.57		Shallow Concentrated Flow,
_	1.1	230	0.0310	3.57		

Foxborough DPW - Existing Condition *Type III 24-hr 100-yr Rainfall=8.12"* Printed 1/31/2024 LLC Page 57

Subcatchment A1: Western Site

Summary for Subcatchment B1: Eastern Site


Runoff = 10.19 cfs @ 12.15 hrs, Volume= 43,883 cf, Depth= 5.60" Routed to Pond 3P : CB

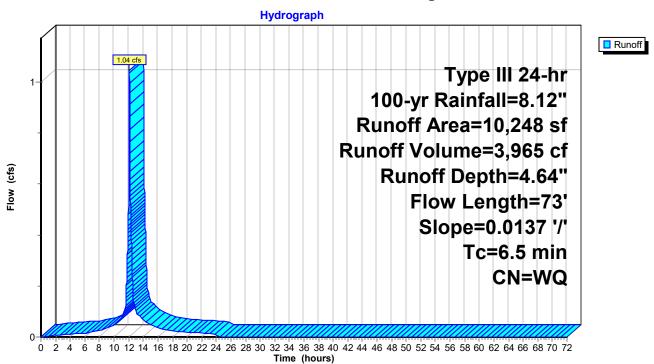
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-yr Rainfall=8.12"

	A	rea (sf)	CN E	Description		
*		35,720	98 F	Paved area	s & roofs, H	HSG A
		29,570	96 C	Gravel surfa	ace, HSG A	N Contraction of the second seco
		878			ace, HSG E	
		27,837		,	od, HSG A	
		28	55 V	Voods, Go	od, HSG B	
		94,033		Veighted A	•	
		58,313	-		rvious Area	
		35,720	3	37.99% Imp	pervious Ar	ea
	-		~		• ••	
	Tc	Length	Slope	Velocity	Capacity	Description
_(min)	(feet)	(ft/ft)	(ft/sec)	Capacity (cfs)	
(-				Sheet Flow,
(<u>min)</u> 8.7	(feet) 86	(ft/ft) 0.1304	(ft/sec) 0.17		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43"
(min)	(feet)	(ft/ft)	(ft/sec)		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43" Shallow Concentrated Flow,
(<u>min)</u> 8.7 0.5	(feet) 86 132	(ft/ft) 0.1304 0.0401	(ft/sec) 0.17 4.07		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43" Shallow Concentrated Flow, Paved Kv= 20.3 fps
(<u>min)</u> 8.7	(feet) 86	(ft/ft) 0.1304	(ft/sec) 0.17		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43" Shallow Concentrated Flow, Paved Kv= 20.3 fps Shallow Concentrated Flow,
(<u>min)</u> 8.7 0.5	(feet) 86 132	(ft/ft) 0.1304 0.0401	(ft/sec) 0.17 4.07		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.43" Shallow Concentrated Flow, Paved Kv= 20.3 fps

HydroCAD Design ExTypPrepared by Weston and SampsonHydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC

Foxborough DPW - Existing Condition *Type III 24-hr 100-yr Rainfall=8.12"* Printed 1/31/2024 LLC Page 59

Subcatchment B1: Eastern Site


Summary for Subcatchment C1: Admin Parking Area

Runoff = 1.04 cfs @ 12.09 hrs, Volume= Routed to Pond INF : Admin Basin 3,965 cf, Depth= 4.64"

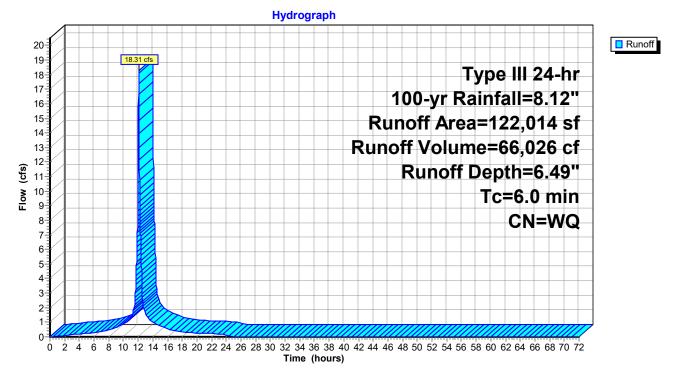
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-yr Rainfall=8.12"

A	rea (sf)	CN Description								
	4,972	39 >	39 >75% Grass cover, Good, HSG A							
	5,276	98 F	Paved park	ing, HSG A						
	10,248	V	Veighted A	verage						
	4,972	4	8.52% Per	vious Area						
	5,276	5	1.48% Imp	ervious Are	ea					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.3	50	0.0137	0.13		Sheet Flow,					
0.2	23	0.0137	2.38		Grass: Short n= 0.150 P2= 3.43" Shallow Concentrated Flow, Paved Kv= 20.3 fps					
6.5	73	Total								

Subcatchment C1: Admin Parking Area

Summary for Subcatchment D1: Southern Site

Runoff = 18.31 cfs @ 12.08 hrs, Volume= 66,026 cf, Depth= 6.49" Routed to Link 1L : POI 1


Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-yr Rainfall=8.12"

	Area (sf)	CN	Description						
*	69,765	98	Paved areas & roofs, HSG A						
	4,316	39	>75% Grass cover, Good, HSG A						
	17,914	30	Woods, Good, HSG A						
	30,019	96	Gravel surface, HSG A						
	122,014		Weighted Average						
	52,249		42.82% Pervious Area						
	69,765		57.18% Impervious Area						
(m	Tc Length nin) (feet)	Slop (ft/							

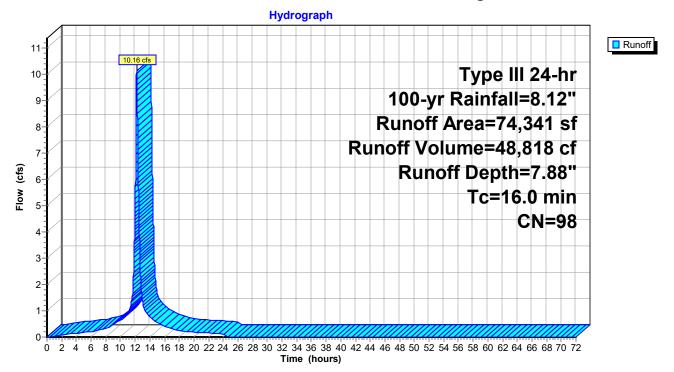
6.0

Direct Entry,

Subcatchment D1: Southern Site

Summary for Subcatchment OFFSITE: Offsite Drainage

Total subcatchment represents approximately 2,039 LF of ROW (81,560 SF) minus areas that directly contribute to the onsite drainage network.


10.16 cfs @ 12.21 hrs, Volume= 48,818 cf, Depth= 7.88" Runoff = Routed to Pond 1P : DMH

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-yr Rainfall=8.12"

Ar	ea (sf)	CN [Description						
	74,341	98 F	98 Paved roads w/curbs & sewers, HSG A						
	74,341		100.00% In	npervious A	rea				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
16.0					Direct Entry,				

Direct Entry,

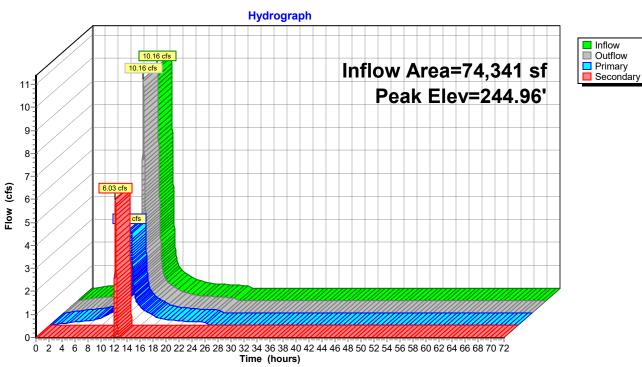
Subcatchment OFFSITE: Offsite Drainage

Summary for Pond 1P: DMH

[58] Hint: Peaked 0.13' above defined flood level

Inflow Area =	74,341 sf	,100.00% Impervious,	Inflow Depth = 7.88" for 100-yr event
Inflow =	10.16 cfs @	12.21 hrs, Volume=	48,818 cf
Outflow =	10.16 cfs @	12.21 hrs, Volume=	48,818 cf, Atten= 0%, Lag= 0.0 min
Primary =	4.13 cfs @	12.21 hrs, Volume=	42,172 cf
Routed to Pon	d 2P : CB		
Secondary =	6.03 cfs @	12.21 hrs, Volume=	6,646 cf
Routed to Link	: 1L : POI 1		

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 244.96' @ 12.21 hrs Flood Elev= 244.83'


Routing	Invert	Outlet Devices
Primary	239.23'	12.0" Round CMP_Round 12"
		L= 107.0' CMP, projecting, no headwall, Ke= 0.900
		Inlet / Outlet Invert= 239.23' / 237.80' S= 0.0134 '/' Cc= 0.900
		n= 0.025 Corrugated metal, Flow Area= 0.79 sf
Secondary	244.58'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600
		Limited to weir flow at low heads
	0	Primary 239.23'

Primary OutFlow Max=4.13 cfs @ 12.21 hrs HW=244.96' (Free Discharge) ←1=CMP_Round 12" (Barrel Controls 4.13 cfs @ 5.26 fps)

Secondary OutFlow Max=6.02 cfs @ 12.21 hrs HW=244.96' (Free Discharge) 2=Orifice/Grate (Weir Controls 6.02 cfs @ 2.00 fps)

HydroCAD Design Ex

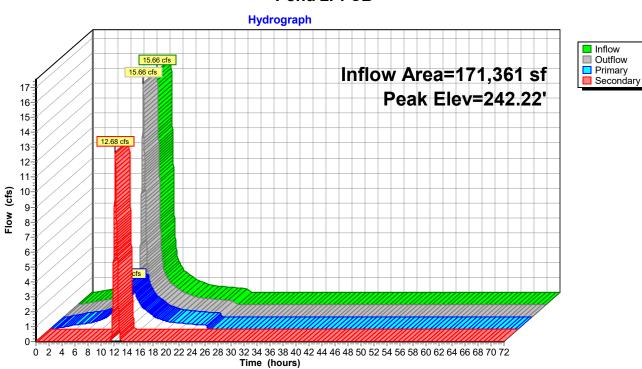
Foxborough DPW - Existing Condition *Type III 24-hr 100-yr Rainfall=8.12"* Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC Printed 1/31/2024 Page 64

Pond 1P: DMH

Summary for Pond 2P: CB

[58] Hint: Peaked 0.37' above defined flood level [81] Warning: Exceeded Pond 1P by 1.59' @ 13.01 hrs

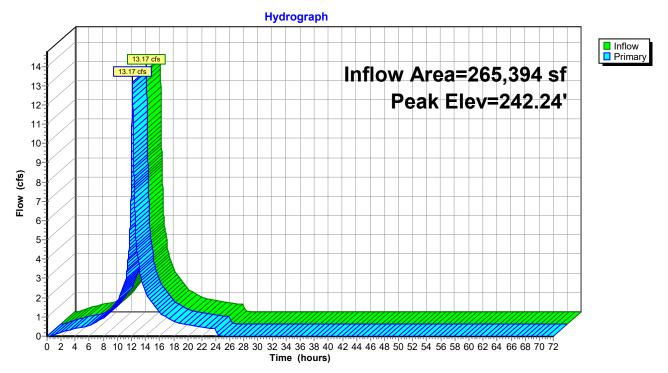
171,361 sf, 78.18% Impervious, Inflow Depth = 6.60" for 100-yr event Inflow Area = 15.66 cfs @ 12.18 hrs, Volume= Inflow = 94,314 cf 15.66 cfs @ 12.18 hrs, Volume= 94,314 cf, Atten= 0%, Lag= 0.0 min Outflow = 2.98 cfs @ 12.18 hrs, Volume= Primary = 69,004 cf Routed to Pond 3P : CB Secondary = 12.68 cfs @ 12.18 hrs, Volume= 25,310 cf Routed to Link 1L : POI 1


Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 242.22' @ 12.18 hrs Flood Elev= 241.85'

Device	Routing	Invert	Outlet Devices
#1	Primary	237.70'	12.0" Round CMP_Round 12"
	-		L= 204.0' CMP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 237.70' / 235.51' S= 0.0107 '/' Cc= 0.900
			n= 0.025 Corrugated metal, Flow Area= 0.79 sf
#2	Secondary	241.60'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads

Primary OutFlow Max=2.98 cfs @ 12.18 hrs HW=242.22' (Free Discharge) -1=CMP_Round 12" (Barrel Controls 2.98 cfs @ 3.79 fps)

Secondary OutFlow Max=12.67 cfs @ 12.18 hrs HW=242.22' (Free Discharge) 2=Orifice/Grate (Weir Controls 12.67 cfs @ 2.57 fps) HydroCAD Design Ex


Foxborough DPW - Existing Condition *Type III 24-hr 100-yr Rainfall=8.12"* Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC Printed 1/31/2024 Page 66

Pond 2P: CB

	xborough DPW - Existing Condition pe III 24-hr 100-yr Rainfall=8.12" Printed 1/31/2024 C Page 67					
Summary for Pond 3P: CB						
[58] Hint: Peaked 0.08' above defined flood level [81] Warning: Exceeded Pond 2P by 0.06' @ 12.11 hrs						
Inflow Area = 265,394 sf, 63.94% Impervious, Inflow Depth = 5.10" for 100-yr event Inflow = 13.17 cfs @ 12.15 hrs, Volume= 112,887 cf Outflow = 13.17 cfs @ 12.15 hrs, Volume= 112,887 cf, Atten= 0%, Lag= 0.0 min Primary = 13.17 cfs @ 12.15 hrs, Volume= 112,887 cf, Atten= 0%, Lag= 0.0 min Primary = 13.17 cfs @ 12.15 hrs, Volume= 112,887 cf Routed to Link 1L : POI 1 1 1 1						
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 242.24' @ 12.15 hrs Flood Elev= 242.16'						
Device Routing Invert Outlet Devices						
 #1 Primary 235.40' #2 Primary 235.40' #2 Primary 241.91' #2 Primary 241.91' #3 Primary 241.91' #4 Primary 241.91' #4 Primary 241.91' #5 Primary 241.91'<td>4' S= 0.0139 '/' Cc= 0.900 Flow Area= 0.79 sf</td>	4' S= 0.0139 '/' Cc= 0.900 Flow Area= 0.79 sf					
Primary OutFlow Max=13.15 cfs @ 12.15 hrs HW=242.24' (Free Dis	scharge)					

Primary OutFlow Max=13.15 cfs @ 12.15 hrs HW=242.24' (Free Discharge) -1=RCP_Round 12" (Barrel Controls 8.08 cfs @ 10.29 fps) -2=Orifice/Grate (Weir Controls 5.06 cfs @ 1.89 fps)

Pond 3P: CB

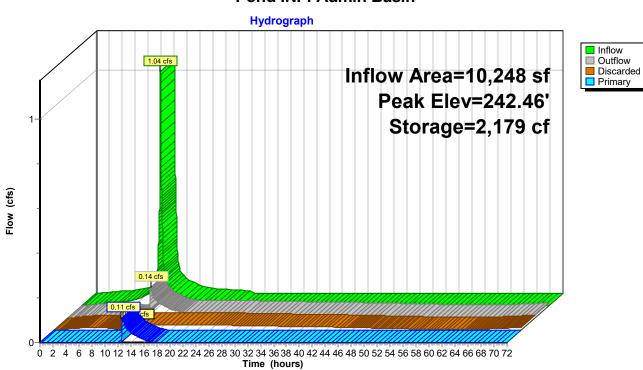
HydroCAD Design ExFoxborough DPW - Existing Condition
Type III 24-hr 100-yr Rainfall=8.12"Prepared by Weston and SampsonPrinted 1/31/2024HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLCPage 68

Summary for Pond INF: Admin Basin

Inflow Area = 10,248 sf, 51.48% Impervious, Inflow Depth = 4.64" for 100-yr event 1.04 cfs @ 12.09 hrs, Volume= Inflow = 3.965 cf 3,955 cf, Atten= 87%, Lag= 37.7 min Outflow = 0.14 cfs @ 12.72 hrs, Volume= Discarded = 0.02 cfs @ 12.72 hrs, Volume= 3,392 cf Primary = 0.11 cfs @ 12.72 hrs, Volume= 563 cf Routed to Link 1L : POI 1

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 242.46' @ 12.72 hrs Surf.Area= 1,034 sf Storage= 2,179 cf Flood Elev= 243.00' Surf.Area= 1,045 sf Storage= 2,218 cf

Plug-Flow detention time= 928.9 min calculated for 3,955 cf (100% of inflow) Center-of-Mass det. time= 927.1 min (1,690.0 - 762.8)

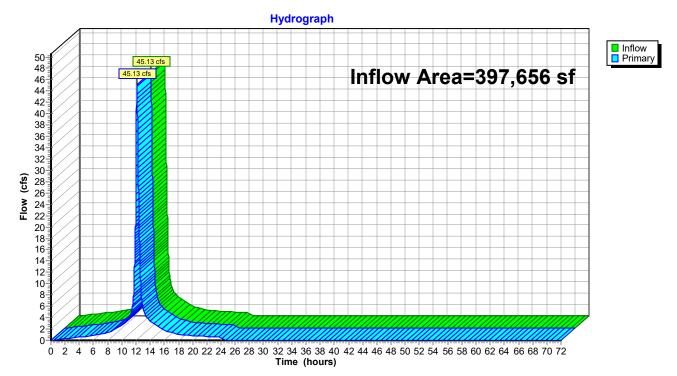

Volume	Invert	Avail	.Storage	Storage	Description		
#1	237.00'		2,218 cf	Custom	Stage Data (Irreg	ular) Listed below ((Recalc)
Elevatio (fee 237.0 239.0 240.5 242.5	90 90 90 50	urf.Area (sq-ft) 560 84 547 1,045	Perim. (feet) 96.0 39.0 97.0 116.0	Voids (%) 0.0 40.0 100.0 100.0	Inc.Store (cubic-feet) 0 230 423 1,565	Cum.Store (cubic-feet) 0 230 652 2,218	Wet.Area (sq-ft) 560 1,187 1,823 2,209
242.5 <u>Device</u> #1 #2	50 Routing Discarded Primary	,	vert Outle .00' 1.02 .45' 29.0' Head 2.50 Coef	et Devices 0 in/hr Ex 1 long x 5 d (feet) 0 3.00 3.5 f. (English	s filtration over Sur 5.0' breadth Broad .20 0.40 0.60 0.8 50 4.00 4.50 5.00	rface area -Crested Rectang 30 1.00 1.20 1.40) 5.50 2.68 2.68 2.66 2	ular Weir 1.60 1.80 2.00

Discarded OutFlow Max=0.02 cfs @ 12.72 hrs HW=242.46' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.02 cfs)

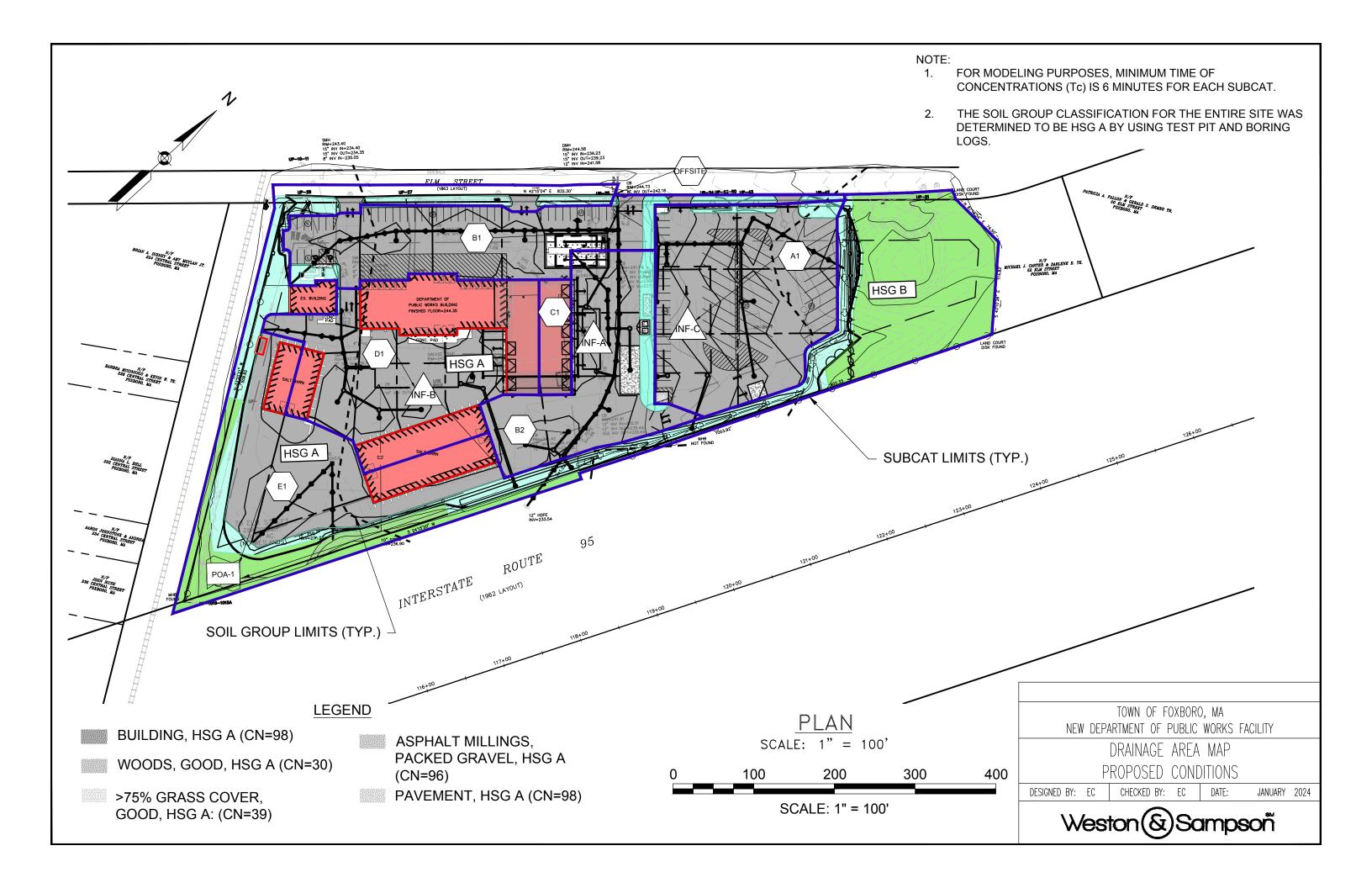
Primary OutFlow Max=0.09 cfs @ 12.72 hrs HW=242.46' (Free Discharge) ←2=Broad-Crested Rectangular Weir (Weir Controls 0.09 cfs @ 0.26 fps) HydroCAD Design Ex

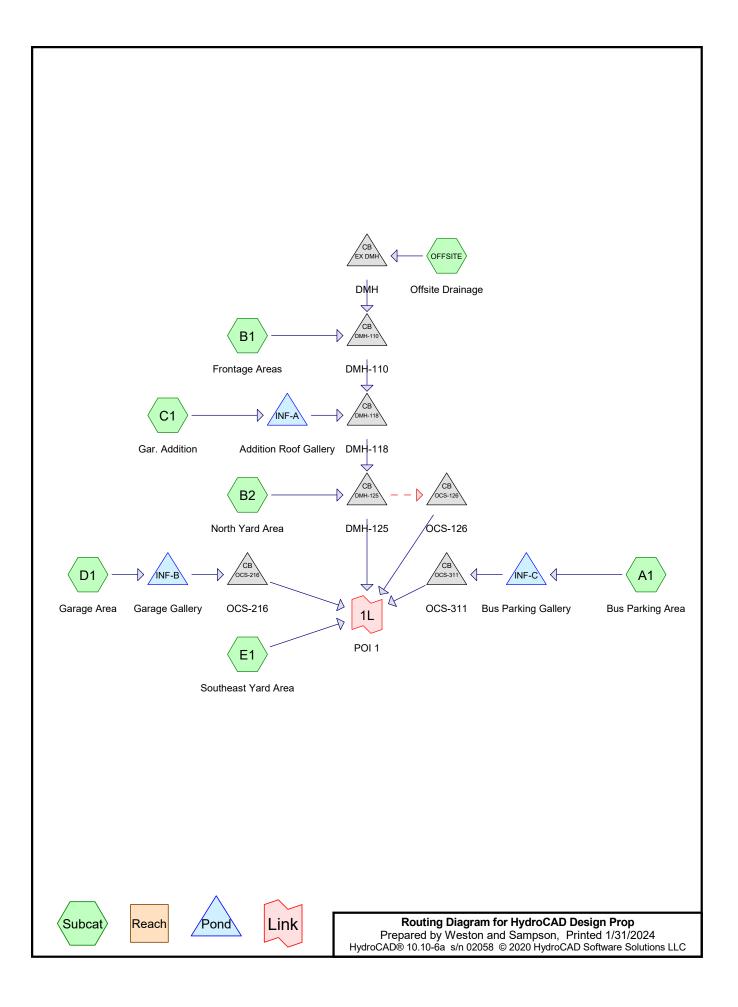
Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC

Foxborough DPW - Existing Condition *Type III 24-hr 100-yr Rainfall=8.12"* Printed 1/31/2024 LLC Page 69



Pond INF: Admin Basin


Summary for Link 1L: POI 1


Inflow Are	a =	397,656 sf, 61.54% Impervious, Inflow Depth = 6.38" for 100-yr event	
Inflow	=	45.13 cfs @ 12.13 hrs, Volume= 211,431 cf	
Primary	=	45.13 cfs @ 12.13 hrs, Volume= 211,431 cf, Atten= 0%, Lag= 0.0 min	1

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Link 1L: POI 1

Printed 1/31/2024 Page 2

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	2-yr	Type III 24-hr		Default	24.00	1	3.43	2
2	10-yr	Type III 24-hr		Default	24.00	1	5.24	2
3	25-yr	Type III 24-hr		Default	24.00	1	6.37	2
4	100-yr	Type III 24-hr		Default	24.00	1	8.12	2

Rainfall Events Listing (selected events)

Foxboro DPW-Proposed Conditions

HydroCAD Design Prop Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC

Printed 1/31/2024 Page 3

Area Listing (all nodes)

Area (sq-ft)	CN	Description (subcatchment-numbers)
35,254	39	>75% Grass cover, Good, HSG A (A1, B1, B2, E1)
7,225	61	>75% Grass cover, Good, HSG B (A1, E1)
74,341	98	Elm St right-of-way (OFFSITE)
125,123	98	Paved areas & roofs (B1, B2, D1)
50,842	98	Paved parking (A1)
47,097	98	Paved parking, HSG A (E1)
5,702	98	Roofs, HSG A (C1)
17,412	30	Woods, Good, HSG A (E1)
34,660	55	Woods, Good, HSG B (E1)
397,656	85	TOTAL AREA

HydroCAD Design Prop Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC

Printed 1/31/2024 Page 4

Soil Listing (all nodes)

Area (sq-ft)	Soil Group	Subcatchment Numbers
105,465	HSG A	A1, B1, B2, C1, E1
41,885	HSG B	A1, E1
0	HSG C	
0	HSG D	
250,306	Other	A1, B1, B2, D1, OFFSITE
397,656		TOTAL AREA

HydroCAD Design Prop Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC Printed 1/31/2024 Page 5

		Ground	Covers (all n	odes)			
HSG-A (sq-ft)	HSG-B (sq-ft)	HSG-C (sq-ft)	HSG-D (sq-ft)	Other (sq-ft)	Total (sq-ft)	Ground Cover	Su Nu
35,254	7,225	0	0	0	42,479	>75% Grass cover, Good	
0	0	0	0	74,341	74,341	Elm St right-of-way	
0	0	0	0	125,123	125,123	Paved areas & roofs	
47,097	0	0	0	50,842	97,939	Paved parking	
5,702	0	0	0	0	5,702	Roofs	
17,412	34,660	0	0	0	52,072	Woods, Good	
105,465	41,885	0	0	250,306	397,656	TOTAL AREA	

HydroCAD Design Prop Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC Printed 1/31/2024 Page 6

Pipe Listing (all nodes)

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Width (inches)	Diam/Height (inches)	Inside-Fill (inches)
1	DMH-110	236.04	235.45	118.0	0.0050	0.012	0.0	24.0	0.0
2	DMH-118	234.97	234.78	37.0	0.0051	0.012	0.0	24.0	0.0
3	DMH-125	235.40	233.54	130.0	0.0143	0.012	0.0	12.0	0.0
4	DMH-125	239.30	237.90	70.0	0.0200	0.012	0.0	12.0	0.0
5	EX DMH	239.23	238.90	20.0	0.0165	0.012	0.0	15.0	0.0
6	INF-A	239.60	239.00	50.0	0.0120	0.013	0.0	12.0	0.0
7	INF-B	237.65	237.40	50.0	0.0050	0.013	0.0	24.0	0.0
8	INF-C	242.80	242.30	100.0	0.0050	0.012	0.0	12.0	0.0

HydroCAD Design Prop Prepared by Weston and Sampson <u>HydroCAD® 10.10-6a_s/n 02058_© 2020 Hyd</u>	Foxboro DPW-Proposed Conditions <i>Type III 24-hr 2-yr Rainfall=3.43"</i> Printed 1/31/2024 IroCAD Software Solutions LLC Page 7
Runoff by SCS T	0-72.00 hrs, dt=0.01 hrs, 7201 points R-20 method, UH=SCS, Weighted-Q d method - Pond routing by Stor-Ind method
Subcatchment A1: Bus Parking Area	Runoff Area=52,591 sf 96.67% Impervious Runoff Depth=3.10" Tc=6.0 min CN=WQ Runoff=3.90 cfs 13,575 cf
Subcatchment B1: Frontage Areas	Runoff Area=40,229 sf 89.49% Impervious Runoff Depth=2.86" Tc=6.0 min CN=WQ Runoff=2.76 cfs 9,593 cf
Subcatchment B2: North Yard Area	Runoff Area=35,224 sf 91.15% Impervious Runoff Depth=2.91" Tc=6.0 min CN=WQ Runoff=2.46 cfs 8,554 cf
Subcatchment C1: Gar. Addition	Runoff Area=5,702 sf 100.00% Impervious Runoff Depth=3.20" Tc=6.0 min CN=98 Runoff=0.44 cfs 1,519 cf
Subcatchment D1: Garage Area	Runoff Area=57,016 sf 100.00% Impervious Runoff Depth=3.20" Tc=6.0 min CN=98 Runoff=4.37 cfs 15,189 cf
Subcatchment E1: Southeast Yard Area	Runoff Area=132,553 sf 35.53% Impervious Runoff Depth=1.25" Tc=6.0 min CN=WQ Runoff=3.73 cfs 13,786 cf
Subcatchment OFFSITE: Offsite Drainage	Runoff Area=74,341 sf 100.00% Impervious Runoff Depth=3.20" Tc=16.0 min CN=98 Runoff=4.25 cfs 19,804 cf
Pond DMH-110: DMH-110	Peak Elev=237.28' Inflow=6.03 cfs 29,396 cf Outflow=6.03 cfs 29,396 cf
Pond DMH-118: DMH-118	Peak Elev=236.30' Inflow=6.03 cfs 29,396 cf Outflow=6.03 cfs 29,396 cf
Pond DMH-125: DMH-125 Primary=6.25 cfs 30	Peak Elev=240.28' Inflow=8.32 cfs 37,950 cf 6,710 cf Secondary=2.07 cfs 1,240 cf Outflow=8.32 cfs 37,950 cf
Pond EX DMH: DMH	Peak Elev=240.31' Inflow=4.25 cfs 19,804 cf Outflow=4.25 cfs 19,804 cf
Pond INF-A: Addition Roof Gallery Discarded=0	Peak Elev=240.37' Storage=537 cf Inflow=0.44 cfs 1,519 cf 0.04 cfs 1,519 cf Primary=0.00 cfs 0 cf Outflow=0.04 cfs 1,519 cf
Pond INF-B: Garage Gallery	Peak Elev=239.18' Storage=6,184 cf Inflow=4.37 cfs 15,189 cf 10,955 cf Primary=1.63 cfs 4,233 cf Outflow=1.73 cfs 15,188 cf
Pond INF-C: Bus Parking Gallery	Peak Elev=242.54' Storage=6,296 cf Inflow=3.90 cfs 13,575 cf 9 cfs 13,575 cf Primary=0.00 cfs 0 cf Outflow=0.19 cfs 13,575 cf
Pond OCS-126: OCS-126	Peak Elev=241.10' Inflow=2.07 cfs 1,240 cf Outflow=2.07 cfs 1,240 cf
Pond OCS-216: OCS-216	Peak Elev=241.16' Inflow=1.63 cfs 4,233 cf Outflow=1.63 cfs 4,233 cf

Peak Elev=245.00' Inflow=0.00 cfs 0 cf Outflow=0.00 cfs 0 cf

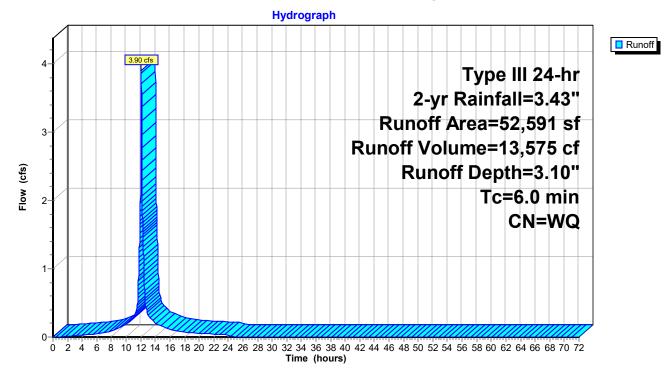
Link 1L: POI 1

Inflow=12.00 cfs 55,970 cf Primary=12.00 cfs 55,970 cf

Total Runoff Area = 397,656 sf Runoff Volume = 82,019 cf Average Runoff Depth = 2.48" 23.78% Pervious = 94,551 sf 76.22% Impervious = 303,105 sf

Pond OCS-311: OCS-311

Summary for Subcatchment A1: Bus Parking Area


Runoff = 3.90 cfs @ 12.08 hrs, Volume=

13,575 cf, Depth= 3.10"

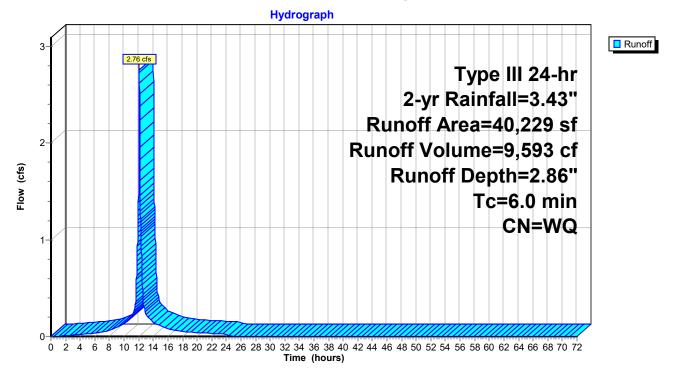
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-yr Rainfall=3.43"

	Area (sf)	CN	Description					
*	50,842	98	Paved park	ing				
	673	61	>75% Gras	s cover, Go	ood, HSG B			
	1,076	39	>75% Gras	>75% Grass cover, Good, HSG A				
	52,591	52,591 Weighted Average						
	1,749		3.33% Perv	vious Area				
	50,842		96.67% Imp	pervious Ar	rea			
T (min		Slop (ft/fl	,	Capacity (cfs)	Description			
6.	0				Direct Entry,			

Subcatchment A1: Bus Parking Area

Summary for Subcatchment B1: Frontage Areas

2.76 cfs @ 12.08 hrs, Volume= Runoff = Routed to Pond DMH-110 : DMH-110

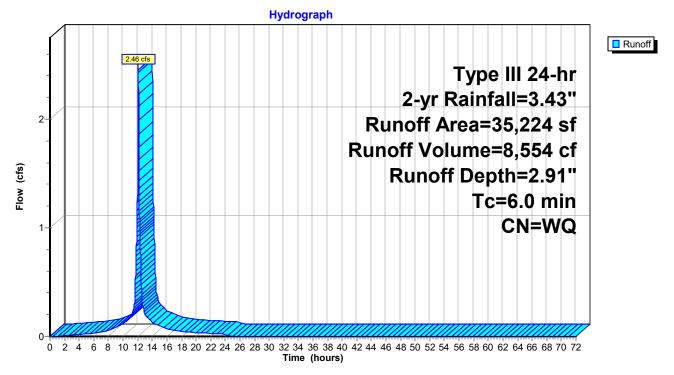

9,593 cf, Depth= 2.86"

Page 10

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-yr Rainfall=3.43"

_	A	rea (sf)	CN	Description						
*		36,002	98	Paved areas & roofs						
_		4,227	39	>75% Gras	>75% Grass cover, Good, HSG A					
		40,229		Weighted A	verage					
		4,227		10.51% Pei	rvious Area	l de la constante de				
		36,002		89.49% Imp	pervious Ar	ea				
_	Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description				
	6.0					Direct Entry,				

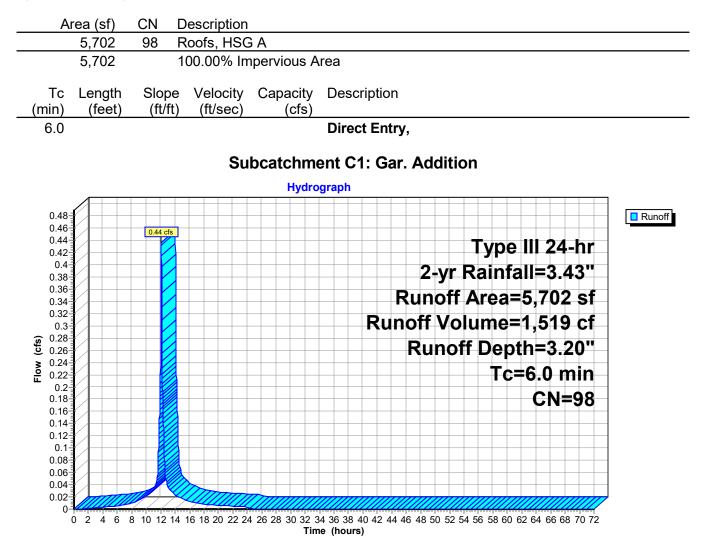
Subcatchment B1: Frontage Areas


Summary for Subcatchment B2: North Yard Area

Runoff = 2.46 cfs @ 12.08 hrs, Volume= Routed to Pond DMH-125 : DMH-125 8,554 cf, Depth= 2.91"

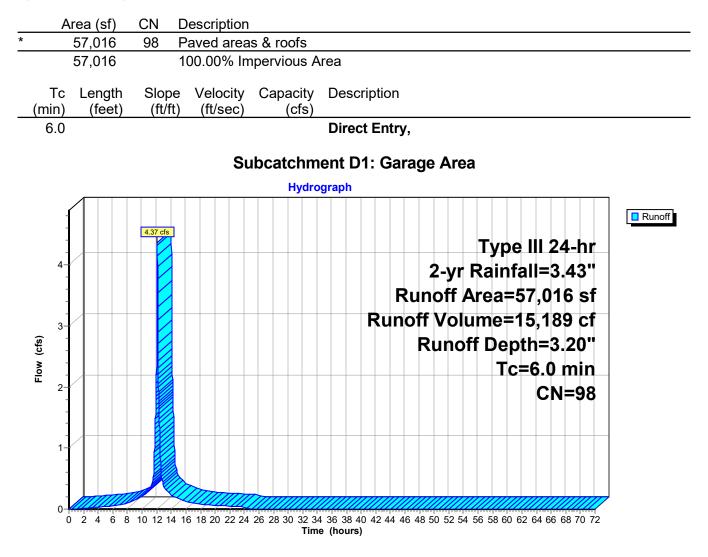
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-yr Rainfall=3.43"

_	A	rea (sf)	CN	Description						
*		32,105	98	Paved areas & roofs						
_		3,119	39	>75% Grass cover, Good, HSG A						
		35,224		Weighted A	verage					
		3,119		8.85% Perv	vious Ārea					
		32,105		91.15% Imp	pervious Ar	ea				
_	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description				
	6.0					Direct Entry,				


Subcatchment B2: North Yard Area

Summary for Subcatchment C1: Gar. Addition

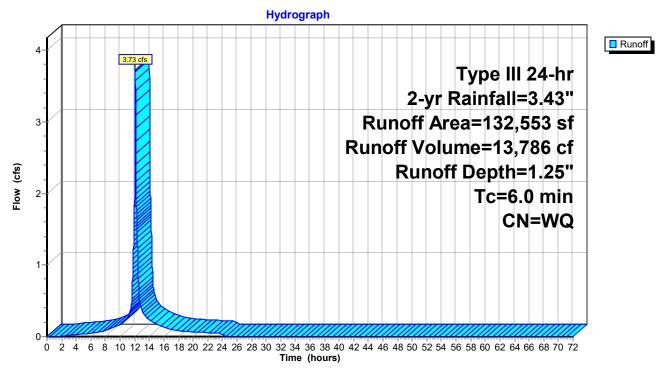
Runoff = 0.44 cfs @ 12.08 hrs, Volume= Routed to Pond INF-A : Addition Roof Gallery 1,519 cf, Depth= 3.20"


Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-yr Rainfall=3.43"

Summary for Subcatchment D1: Garage Area

Runoff = 4.37 cfs @ 12.08 hrs, Volume= Routed to Pond INF-B : Garage Gallery 15,189 cf, Depth= 3.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-yr Rainfall=3.43"


Summary for Subcatchment E1: Southeast Yard Area

Runoff = 3.73 cfs @ 12.09 hrs, Volume= 13,786 cf, Depth= 1.25" Routed to Link 1L : POI 1

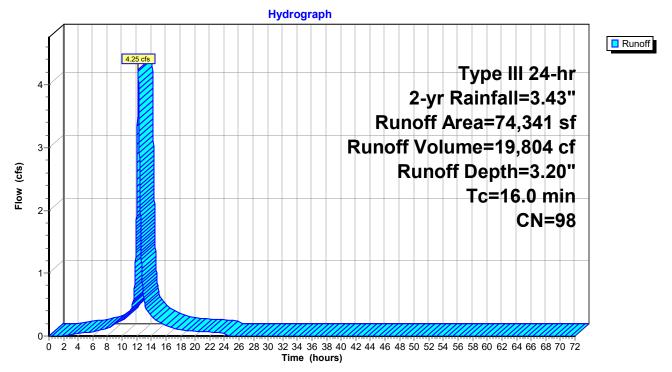
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-yr Rainfall=3.43"

Area (sf)	CN	Description				
47,097	98	Paved parking, HSG A				
26,832	39	>75% Grass cover, Good, HSG A				
17,412	30	Woods, Good, HSG A				
34,660	55	Woods, Good, HSG B				
6,552	61	>75% Grass cover, Good, HSG B				
132,553		Weighted Average				
85,456		64.47% Pervious Area				
47,097		35.53% Impervious Area				
Tc Length (min) (feet)	Sloj (ft/					
6.0		Direct Entry,				

Subcatchment E1: Southeast Yard Area

19,804 cf, Depth= 3.20"

Summary for Subcatchment OFFSITE: Offsite Drainage


Total subcatchment represents approximately 2,039 LF of ROW (81,560 SF) minus areas that directly contribute to the onsite drainage network.

Runoff	=	4.25 cfs @	12.21 hrs,	Volume=	
Route	d to Po	ond EX DMH : D	MH		

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2-yr Rainfall=3.43"

	A	rea (sf)	CN I	N Description					
*		74,341	98 I	Elm St right-of-way					
		74,341		100.00% In	npervious A	rea			
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	16.0					Direct Entry,			

Subcatchment OFFSITE: Offsite Drainage

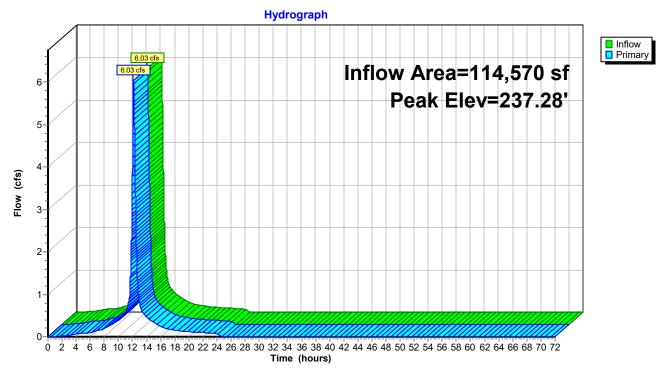
 Foxboro DPW-Proposed Conditions

 Type III 24-hr 2-yr Rainfall=3.43"

 Prepared by Weston and Sampson
 Printed 1/31/2024

 HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC
 Page 16

 Summary for Pond DMH-110: DMH-110


 Inflow Area =
 114,570 sf, 96.31% Impervious, Inflow Depth = 3.08" for 2-yr event

6.03 cfs @ 12.13 hrs, Volume= Inflow = 29.396 cf 6.03 cfs @ 12.13 hrs, Volume= 29,396 cf, Atten= 0%, Lag= 0.0 min Outflow = 6.03 cfs @ 12.13 hrs, Volume= Primary = 29,396 cf Routed to Pond DMH-118 : DMH-118 Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 237.28' @ 12.13 hrs Flood Elev= 241.60' Device Routing Invert Outlet Devices #1 Primary 236.04' 24.0" Round Culvert L= 118.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 236.04' / 235.45' S= 0.0050 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 3.14 sf #2 **24.0" x 24.0" Horiz. Orifice/Grate** C= 0.600 Primary 244.43' Limited to weir flow at low heads

Primary OutFlow Max=6.03 cfs @ 12.13 hrs HW=237.28' (Free Discharge) -1=Culvert (Barrel Controls 6.03 cfs @ 4.23 fps)

-2=Orifice/Grate (Controls 0.00 cfs)

Pond DMH-110: DMH-110

Summary for Pond DMH-118: DMH-118

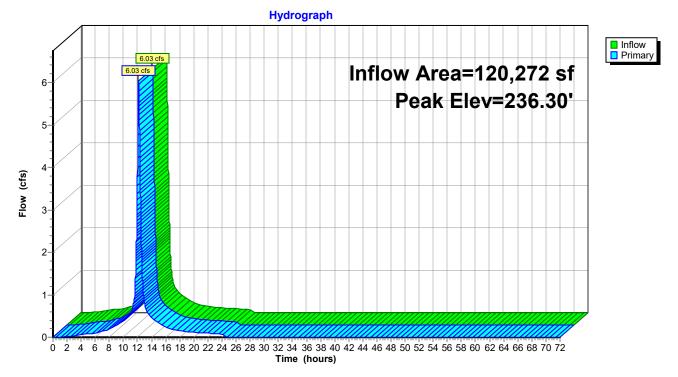
[79] Warning: Submerged Pond DMH-110 Primary device # 1 INLET by 0.26'

 Inflow Area =
 120,272 sf, 96.49% Impervious, Inflow Depth =
 2.93" for 2-yr event

 Inflow =
 6.03 cfs @
 12.13 hrs, Volume=
 29,396 cf

 Outflow =
 6.03 cfs @
 12.13 hrs, Volume=
 29,396 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 6.03 cfs @
 12.13 hrs, Volume=
 29,396 cf


 Routed to Pond DMH-125 : DMH-125
 DMH-125

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 236.30' @ 12.13 hrs Flood Elev= 241.41'

Device	Routing	Invert	Outlet Devices
#1	Primary	234.97'	24.0" Round culvert
			L= 37.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 234.97' / 234.78' S= 0.0051 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 3.14 sf
#2	Primary	243.98'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=6.03 cfs @ 12.13 hrs HW=236.30' (Free Discharge) -1=culvert (Barrel Controls 6.03 cfs @ 3.83 fps) -2=Orifice/Grate (Controls 0.00 cfs)

Pond DMH-118: DMH-118

Summary for Pond DMH-125: DMH-125

Page 18

[81] Warning: Exceeded Pond DMH-118 by 3.99' @ 12.10 hrs

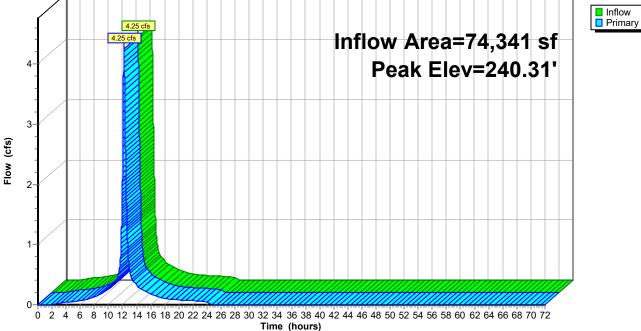
Inflow Area =		155,496 sf, 9	95.28% Impervious,	Inflow Depth = 2.93"	for 2-yr event				
Inflow	=	8.32 cfs @ 12	2.10 hrs, Volume=	37,950 cf					
Outflow	=	8.32 cfs @ 12	2.10 hrs, Volume=	37,950 cf, Atter	n= 0%, Lag= 0.0 min				
Primary	=	6.25 cfs @ 12	2.10 hrs, Volume=	36,710 cf					
Routed to Link 1L : POI 1									
Secondary = 2.07 cfs @		2.07 cfs @ 12	2.10 hrs, Volume=	1,240 cf					
Routed to Pond OCS-126 : OCS-126									
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs									
Peak Elev= 240.28' @ 12.10 hrs									
Flood Elev= 240.50'									
Device	Routing	Invert	Outlet Devices						
#1	Primary	235.40'	12.0" Round Culvert						
	L= 130.0' CPP, projecting, no headwall, Ke= 0.900								
	Inlet / Outlet Invert= 235.40' / 233.54' S= 0.0143 '/' Cc= 0.90								
	Flow Area= 0.79 sf								
40	0		40 All Devend Outwart						

#2 Secondary 239.30' 12.0" Round Culvert L= 70.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 239.30' / 237.90' S= 0.0200 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=6.24 cfs @ 12.10 hrs HW=240.27' (Free Discharge) -1=Culvert (Inlet Controls 6.24 cfs @ 7.95 fps)

Secondary OutFlow Max=2.07 cfs @ 12.10 hrs HW=240.27' (Free Discharge) —2=Culvert (Inlet Controls 2.07 cfs @ 2.65 fps)

HydroCAD Design Prop


Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC

Foxboro DPW-Proposed Conditions *Type III 24-hr 2-yr Rainfall=3.43"* Printed 1/31/2024 C Page 19

Hydrograph Inflow 8.32 cfs Outflow Primary
 Secondary 8.32 cfs Inflow Area=155,496 sf 9-Peak Elev=240.28' 8-7-6.25 cfs 6-Flow (cfs) 5-4-3-2.07 cfs 2-1 0-0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Pond DMH-125: DMH-125

Foxboro DPW-Proposed Conditions Type III 24-hr 2-yr Rainfall=3.43" HydroCAD Design Prop Printed 1/31/2024 Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC Page 20 Summary for Pond EX DMH: DMH Inflow Area = 74,341 sf,100.00% Impervious, Inflow Depth = 3.20" for 2-yr event Inflow 4.25 cfs @ 12.21 hrs, Volume= = 19.804 cf 19,804 cf, Atten= 0%, Lag= 0.0 min Outflow = 4.25 cfs @ 12.21 hrs, Volume= 4.25 cfs @ 12.21 hrs, Volume= Primary = 19,804 cf Routed to Pond DMH-110 : DMH-110 Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 240.31' @ 12.21 hrs Flood Elev= 244.83' Device Routing Invert Outlet Devices #1 Primary 239.23' 15.0" Round RCP Round 15" L= 20.0' RCP, groove end projecting, Ke= 0.200 Inlet / Outlet Invert= 239.23' / 238.90' S= 0.0165 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 1.23 sf #2 **24.0" x 24.0" Horiz. Orifice/Grate** C= 0.600 Primary 244.58' Limited to weir flow at low heads Primary OutFlow Max=4.25 cfs @ 12.21 hrs HW=240.31' (Free Discharge) -1=RCP_Round 15" (Barrel Controls 4.25 cfs @ 5.03 fps) -2=Orifice/Grate (Controls 0.00 cfs) Pond EX DMH: DMH **Hydrograph** Inflow Primary 4.25 cfs

Summary for Pond INF-A: Addition Roof Gallery

Printed 1/31/2024

Page 21

Inflow Area = 5,702 sf,100.00% Impervious, Inflow Depth = 3.20" for 2-yr event 0.44 cfs @ 12.08 hrs, Volume= Inflow = 1.519 cf 1,519 cf, Atten= 91%, Lag= 49.0 min Outflow = 0.04 cfs @ 12.90 hrs, Volume= Discarded = 0.04 cfs @ 12.90 hrs, Volume= 1,519 cf Primary = 0.00 cfs @ 0.00 hrs, Volume= 0 cf Routed to Pond DMH-118 : DMH-118

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 240.37' @ 12.90 hrs Surf.Area= 1,600 sf Storage= 537 cf Flood Elev= 242.03' Surf.Area= 1,600 sf Storage= 2,022 cf

Plug-Flow detention time= 94.8 min calculated for 1,519 cf (100% of inflow) Center-of-Mass det. time= 94.8 min (849.8 - 755.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	239.70'	1,139 cf	21.50'W x 74.40'L x 2.33'H Field A
			3,732 cf Overall - 885 cf Embedded = 2,848 cf x 40.0% Voids
#2A	240.20'	885 cf	ADS_StormTech SC-310 +Cap x 60 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			60 Chambers in 6 Rows
		2,024 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	239.60'	12.0" Round Culvert
			L= 50.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 239.60' / 239.00' S= 0.0120 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	240.95'	2.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
			0.5' Crest Height
#3	Discarded	239.70'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.04 cfs @ 12.90 hrs HW=240.37' (Free Discharge) **-3=Exfiltration** (Exfiltration Controls 0.04 cfs)

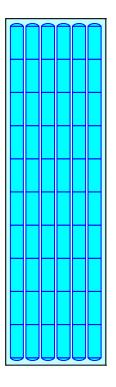
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=239.70' (Free Discharge) -1=Culvert (Passes 0.00 cfs of 0.03 cfs potential flow)

1-2=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

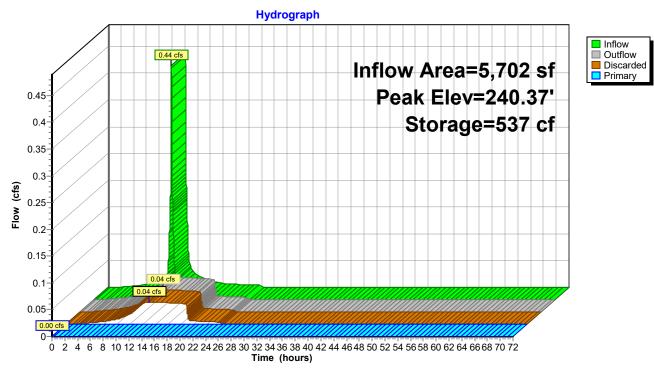
Pond INF-A: Addition Roof Gallery - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-310 +Cap (ADS StormTech® SC-310 with cap length) Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap

34.0" Wide + 6.0" Spacing = 40.0" C-C Row Spacing


10 Chambers/Row x 7.12' Long +0.60' Cap Length x 2 = 72.40' Row Length +12.0" End Stone x 2 = 74.40' Base Length 6 Rows x 34.0" Wide + 6.0" Spacing x 5 + 12.0" Side Stone x 2 = 21.50' Base Width 6.0" Stone Base + 16.0" Chamber Height + 6.0" Stone Cover = 2.33' Field Height

60 Chambers x 14.7 cf = 884.5 cf Chamber Storage


3,732.4 cf Field - 884.5 cf Chambers = 2,847.9 cf Stone x 40.0% Voids = 1,139.2 cf Stone Storage

Chamber Storage + Stone Storage = 2,023.7 cf = 0.046 af Overall Storage Efficiency = 54.2%Overall System Size = $74.40' \times 21.50' \times 2.33'$

60 Chambers 138.2 cy Field 105.5 cy Stone

 $\triangle \triangle \triangle \triangle \triangle \triangle \triangle$

Pond INF-A: Addition Roof Gallery

Summary for Pond INF-B: Garage Gallery

Inflow Area = 57,016 sf,100.00% Impervious, Inflow Depth = 3.20" for 2-yr event 4.37 cfs @ 12.08 hrs, Volume= Inflow = 15,189 cf Outflow = 1.73 cfs @ 12.30 hrs, Volume= 15,188 cf, Atten= 60%, Lag= 12.9 min Discarded = 0.10 cfs @ 12.30 hrs, Volume= 10,955 cf Primary = 1.63 cfs @ 12.30 hrs, Volume= 4,233 cf Routed to Pond OCS-216 : OCS-216

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 239.18' @ 12.30 hrs Surf.Area= 3,590 sf Storage= 6,184 cf Flood Elev= 240.40' Surf.Area= 3,590 sf Storage= 7,727 cf

Plug-Flow detention time= 381.5 min calculated for 15,186 cf (100% of inflow) Center-of-Mass det. time= 381.6 min (1,136.6 - 755.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	236.65'	3,225 cf	34.75'W x 103.30'L x 3.50'H Field A
			12,563 cf Overall - 4,502 cf Embedded = 8,061 cf x 40.0% Voids
#2A	237.15'	4,502 cf	ADS_StormTech SC-740 +Cap x 98 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			98 Chambers in 7 Rows
		7,727 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	237.65'	24.0" Round Culvert
			L= 50.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 237.65' / 237.40' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf
#2	Device 1	238.85'	2.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
			0.5' Crest Height
#3	Discarded	236.65'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.10 cfs @ 12.30 hrs HW=239.18' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.10 cfs)

Primary OutFlow Max=1.62 cfs @ 12.30 hrs HW=239.18' (Free Discharge) 1=Culvert (Passes 1.62 cfs of 7.58 cfs potential flow) 2=Sharp Created Bostongular Wair (Wair Controls 1.62 cfs @ 2.02 fpc)

2=Sharp-Crested Rectangular Weir (Weir Controls 1.62 cfs @ 2.03 fps)

Pond INF-B: Garage Gallery - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech® SC-740 with cap length) Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

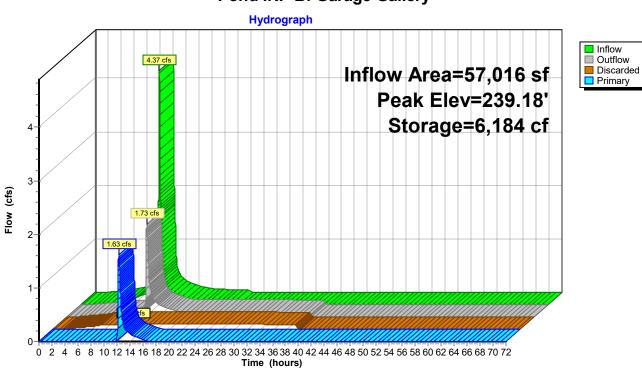
14 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 101.30' Row Length +12.0" End Stone x 2 = 103.30' Base Length 7 Rows x 51.0" Wide + 6.0" Spacing x 6 + 12.0" Side Stone x 2 = 34.75' Base Width 6.0" Stone Base + 30.0" Chamber Height + 6.0" Stone Cover = 3.50' Field Height

98 Chambers x 45.9 cf = 4,502.1 cf Chamber Storage

12,563.5 cf Field - 4,502.1 cf Chambers = 8,061.3 cf Stone x 40.0% Voids = 3,224.5 cf Stone Storage

Chamber Storage + Stone Storage = 7,726.7 cf = 0.177 af Overall Storage Efficiency = 61.5%Overall System Size = $103.30' \times 34.75' \times 3.50'$

98 Chambers 465.3 cy Field 298.6 cy Stone


	_	_	_	_	_	_	_
<td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Image: Section of the sectio							
Image: Sector							
Image: selection of the							
Image: selection of the selection							
Image: selection of the							
Image: state							
.							
Image: Sector							
Image: state							

 $\square \square \square$

HydroCAD Design Prop

Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC

Foxboro DPW-Proposed Conditions *Type III 24-hr 2-yr Rainfall=3.43"* Printed 1/31/2024 C Page 26

Pond INF-B: Garage Gallery

Summary for Pond INF-C: Bus Parking Gallery

Inflow Area = 52,591 sf, 96.67% Impervious, Inflow Depth = 3.10" for 2-yr event 3.90 cfs @ 12.08 hrs, Volume= Inflow = 13,575 cf 0.19 cfs @ 14.19 hrs, Volume= 13,575 cf, Atten= 95%, Lag= 126.5 min Outflow = Discarded = 0.19 cfs @ 14.19 hrs, Volume= 13,575 cf Primary = 0.00 cfs @ 0.00 hrs, Volume= 0 cf Routed to Pond OCS-311 : OCS-311

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 242.54' @ 14.19 hrs Surf.Area= 7,709 sf Storage= 6,296 cf Flood Elev= 244.80' Surf.Area= 7,709 sf Storage= 16,746 cf

Plug-Flow detention time= 277.5 min calculated for 13,575 cf (100% of inflow) Center-of-Mass det. time= 277.4 min (1,032.8 - 755.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	241.30'	6,823 cf	58.50'W x 131.78'L x 3.50'H Field A
			26,981 cf Overall - 9,923 cf Embedded = 17,058 cf x 40.0% Voids
#2A	241.80'	9,923 cf	ADS_StormTech SC-740 +Cap x 216 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			216 Chambers in 12 Rows
		16,746 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	242.80'	12.0" Round Culvert
			L= 100.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 242.80' / 242.30' S= 0.0050 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf
#2	Device 1	244.05'	2.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
			0.5' Crest Height
#3	Discarded	241.30'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.19 cfs @ 14.19 hrs HW=242.54' (Free Discharge) **-3=Exfiltration** (Exfiltration Controls 0.19 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=241.30' (Free Discharge) -1=Culvert (Controls 0.00 cfs)

1-2=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Pond INF-C: Bus Parking Gallery - Chamber Wizard Field A

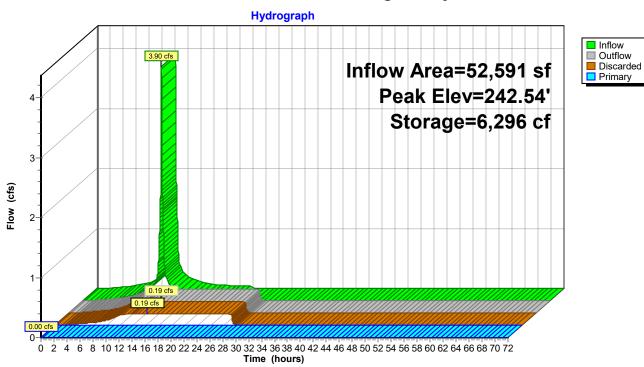
Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech® SC-740 with cap length) Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

18 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 129.78' Row Length +12.0" End Stone x 2 = 131.78' Base Length 12 Rows x 51.0" Wide + 6.0" Spacing x 11 + 12.0" Side Stone x 2 = 58.50' Base Width 6.0" Stone Base + 30.0" Chamber Height + 6.0" Stone Cover = 3.50' Field Height

216 Chambers x 45.9 cf = 9,923.0 cf Chamber Storage

26,981.3 cf Field - 9,923.0 cf Chambers = 17,058.2 cf Stone x 40.0% Voids = 6,823.3 cf Stone Storage


Chamber Storage + Stone Storage = 16,746.3 cf = 0.384 af Overall Storage Efficiency = 62.1% Overall System Size = 131.78' x 58.50' x 3.50'

216 Chambers 999.3 cy Field 631.8 cy Stone

	Q	Ó	0	D	0	0	D	0)		0
	H			Н	H	H	H				H
	Ц										
	H										
	H	_									
	H	-		Н	Н	Н	Н		Н		Н
	Ц										
	H										
	H	_									
	H	-		Н	Н	Н	Н	Н	Н	Н	H
	Ц										
	H										
	H										
U				U	U	U	U	U	U	U	U

HydroCAD Design Prop

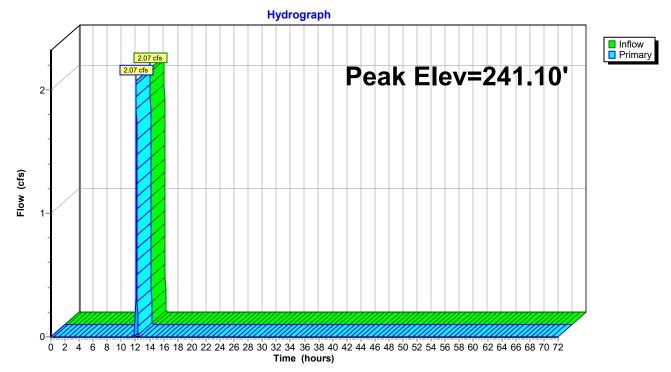
Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC

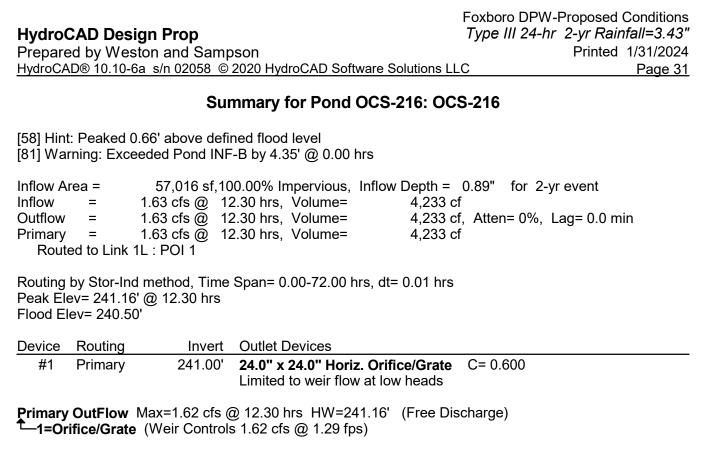
Pond INF-C: Bus Parking Gallery

Summary for Pond OCS-126: OCS-126

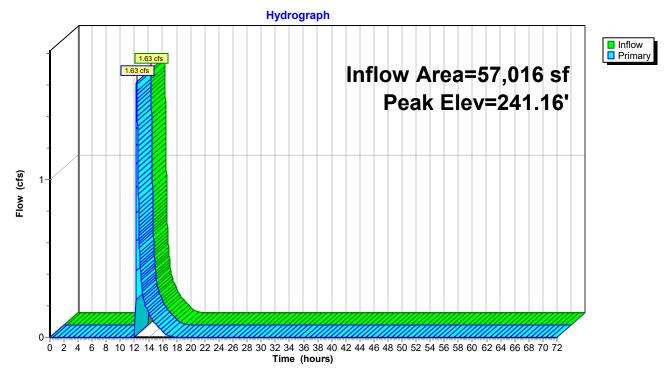
[57] Hint: Peaked at 241.10' (Flood elevation advised)[81] Warning: Exceeded Pond DMH-125 by 5.52' @ 0.00 hrs

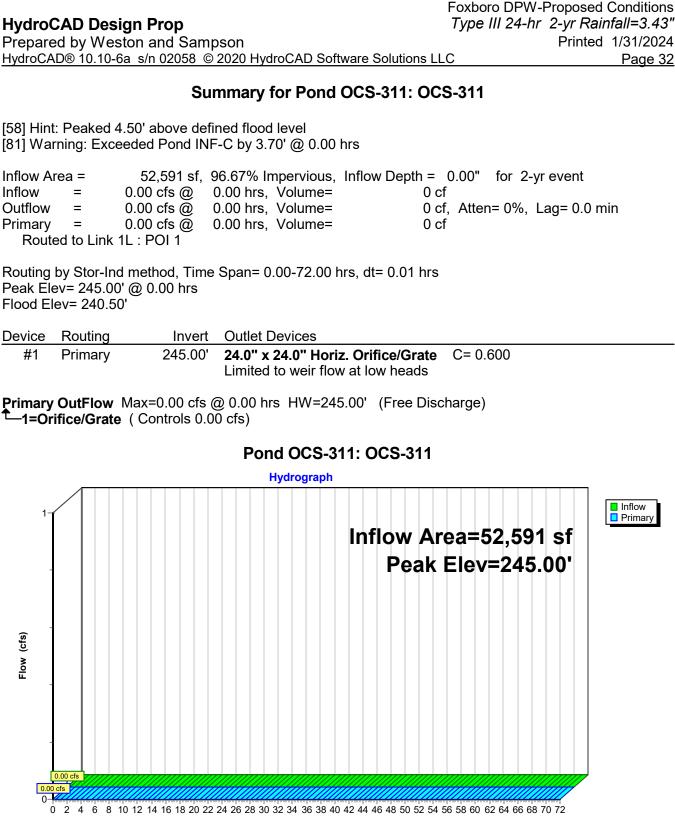
Inflow	=	2.07 cfs @	12.10 hrs,	Volume=	
Outflow	=	2.07 cfs @	12.10 hrs,	Volume=	
Primary	=	2.07 cfs @	12.10 hrs,	Volume=	
Routed to Link 1L : POI 1					


1,240 cf 1,240 cf, Atten= 0%, Lag= 0.0 min 1,240 cf


Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 241.10' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	240.92'	24.0" x 24.0" Horiz. Overflow Grate Limited to weir flow at low heads	C= 0.600


Primary OutFlow Max=2.06 cfs @ 12.10 hrs HW=241.10' (Free Discharge) ←1=Overflow Grate (Weir Controls 2.06 cfs @ 1.40 fps)


Pond OCS-126: OCS-126



Time (hours)

Summary for Link 1L: POI 1

Inflow Area	a =	397,656 sf, 76.22% Impervious, Inflow Depth = 1.69" for 2-yr e	vent
Inflow	=	12.00 cfs @ 12.10 hrs, Volume= 55,970 cf	
Primary	=	12.00 cfs @ 12.10 hrs, Volume= 55,970 cf, Atten= 0%, Lag	= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Link 1L: POI 1

HydroCAD Design Prop Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 Hyd	Foxboro DPW-Proposed Conditions <i>Type III 24-hr 10-yr Rainfall=5.24"</i> Printed 1/31/2024 roCAD Software Solutions LLC Page 34
Runoff by SCS T	0-72.00 hrs, dt=0.01 hrs, 7201 points R-20 method, UH=SCS, Weighted-Q d method . Pond routing by Stor-Ind method
Subcatchment A1: Bus Parking Area	Runoff Area=52,591 sf 96.67% Impervious Runoff Depth=4.86" Tc=6.0 min CN=WQ Runoff=6.01 cfs 21,304 cf
Subcatchment B1: Frontage Areas	Runoff Area=40,229 sf 89.49% Impervious Runoff Depth=4.50" Tc=6.0 min CN=WQ Runoff=4.24 cfs 15,098 cf
Subcatchment B2: North Yard Area	Runoff Area=35,224 sf 91.15% Impervious Runoff Depth=4.58" Tc=6.0 min CN=WQ Runoff=3.78 cfs 13,450 cf
Subcatchment C1: Gar. Addition	Runoff Area=5,702 sf 100.00% Impervious Runoff Depth=5.00" Tc=6.0 min CN=98 Runoff=0.67 cfs 2,377 cf
Subcatchment D1: Garage Area	Runoff Area=57,016 sf 100.00% Impervious Runoff Depth=5.00" Tc=6.0 min CN=98 Runoff=6.71 cfs 23,770 cf
Subcatchment E1: Southeast Yard Area	Runoff Area=132,553 sf 35.53% Impervious Runoff Depth=2.19" Tc=6.0 min CN=WQ Runoff=6.61 cfs 24,226 cf
Subcatchment OFFSITE: Offsite Drainage	Runoff Area=74,341 sf 100.00% Impervious Runoff Depth=5.00" Tc=16.0 min CN=98 Runoff=6.54 cfs 30,993 cf
Pond DMH-110: DMH-110	Peak Elev=237.66' Inflow=9.28 cfs 46,091 cf Outflow=9.28 cfs 46,091 cf
Pond DMH-118: DMH-118	Peak Elev=236.72' Inflow=9.28 cfs 46,091 cf Outflow=9.28 cfs 46,091 cf
Pond DMH-125: DMH-125 Primary=7.75 cfs 54	Peak Elev=242.66' Inflow=12.80 cfs 59,540 cf 478 cf Secondary=5.05 cfs 5,062 cf Outflow=12.80 cfs 59,540 cf
Pond EX DMH: DMH	Peak Elev=240.78' Inflow=6.54 cfs 30,993 cf Outflow=6.54 cfs 30,993 cf
Pond INF-A: Addition Roof Gallery Discarded=0	Peak Elev=240.75' Storage=981 cf Inflow=0.67 cfs 2,377 cf 0.04 cfs 2,377 cf Primary=0.00 cfs 0 cf Outflow=0.04 cfs 2,377 cf
Pond INF-B: Garage Gallery Discarded=0.10 cfs	Peak Elev=239.61' Storage=6,951 cf Inflow=6.71 cfs 23,770 cf 12,224 cf Primary=6.04 cfs 11,546 cf Outflow=6.14 cfs 23,770 cf
Pond INF-C: Bus Parking Gallery Discarded=0.20	Peak Elev=243.47' Storage=11,656 cf Inflow=6.01 cfs 21,304 cf 0 cfs 21,304 cf Primary=0.00 cfs 0 cf Outflow=0.20 cfs 21,304 cf
Pond OCS-126: OCS-126	Peak Elev=241.25' Inflow=5.05 cfs 5,062 cf Outflow=5.05 cfs 5,062 cf
Pond OCS-216: OCS-216	Peak Elev=241.38' Inflow=6.04 cfs 11,546 cf Outflow=6.04 cfs 11,546 cf

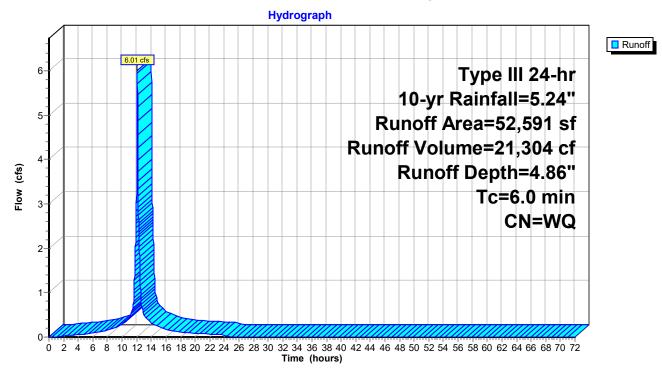
Peak Elev=245.00' Inflow=0.00 cfs 0 cf Outflow=0.00 cfs 0 cf

Link 1L: POI 1

Pond OCS-311: OCS-311

Inflow=25.21 cfs 95,313 cf Primary=25.21 cfs 95,313 cf

Total Runoff Area = 397,656 sf Runoff Volume = 131,218 cf Average Runoff Depth = 3.96" 23.78% Pervious = 94,551 sf 76.22% Impervious = 303,105 sf

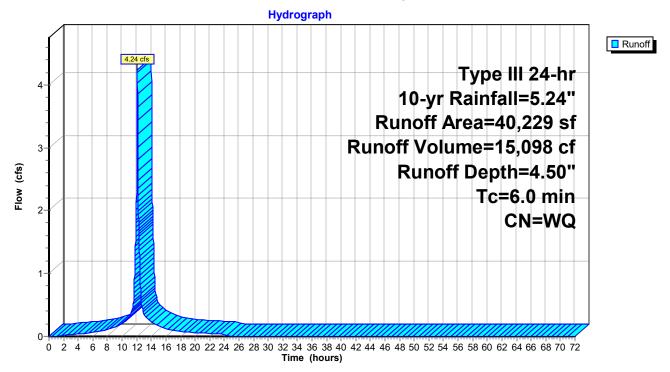

Summary for Subcatchment A1: Bus Parking Area

Runoff = 6.01 cfs @ 12.08 hrs, Volume= Routed to Pond INF-C : Bus Parking Gallery 21,304 cf, Depth= 4.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-yr Rainfall=5.24"

	Area (sf)	CN	Description				
*	50,842	98	Paved park	ing			
	673	61	>75% Gras	s cover, Go	ood, HSG B		
	1,076	39	>75% Grass cover, Good, HSG A				
	52,591		Weighted Average				
	1,749		3.33% Perv	vious Area			
	50,842	96.67% Impervious Area			rea		
т.	1 41			0			
Tc		Slop		Capacity	Description		
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
6.0					Direct Entry,		

Subcatchment A1: Bus Parking Area

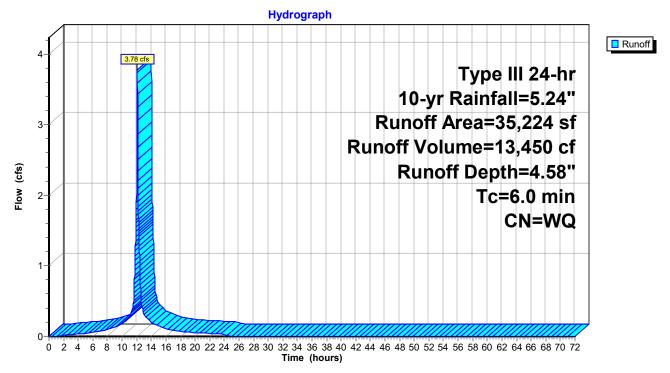

Summary for Subcatchment B1: Frontage Areas

Runoff = 4.24 cfs @ 12.08 hrs, Volume= Routed to Pond DMH-110 : DMH-110 15,098 cf, Depth= 4.50"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-yr Rainfall=5.24"

_	A	rea (sf)	CN	N Description				
*		36,002	98	Paved areas & roofs				
_		4,227	39	>75% Grass cover, Good, HSG A				
		40,229		Weighted A	verage			
		4,227		10.51% Pe	rvious Area	3		
		36,002	89.49% Impervious Are			rea		
	Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description		
	6.0					Direct Entry,		

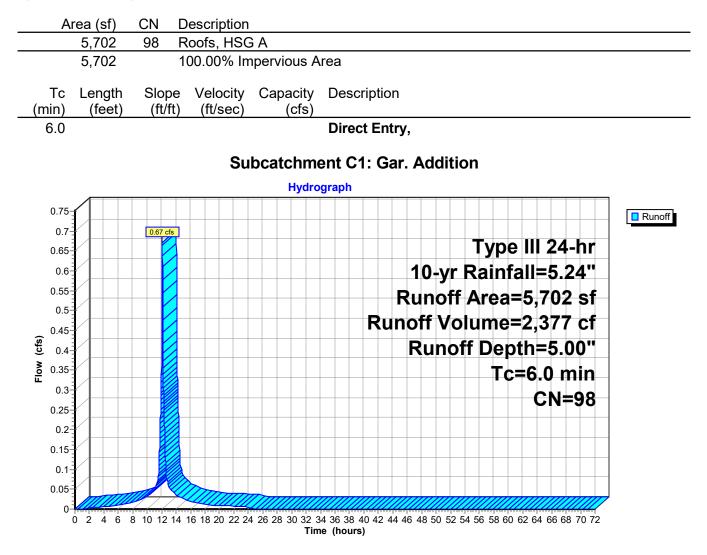
Subcatchment B1: Frontage Areas


Summary for Subcatchment B2: North Yard Area

Runoff = 3.78 cfs @ 12.08 hrs, Volume= Routed to Pond DMH-125 : DMH-125 13,450 cf, Depth= 4.58"

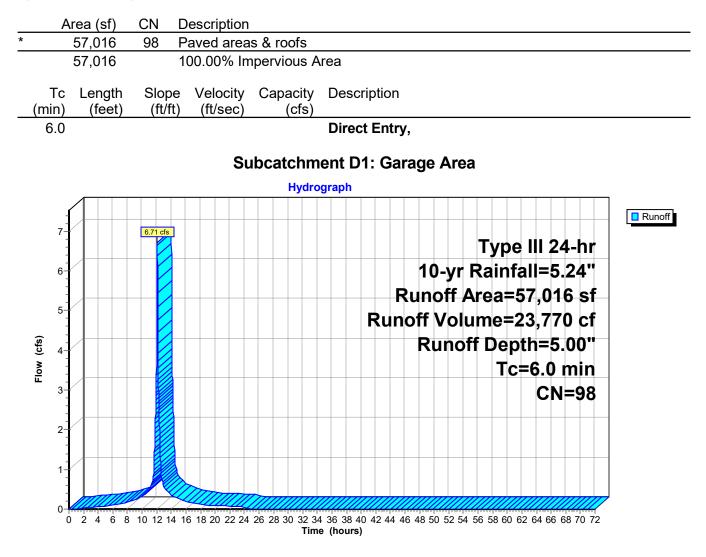
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-yr Rainfall=5.24"

	Area (sf)	CN	Description				
*	32,105	98	Paved area	is & roofs			
	3,119	39	>75% Grass cover, Good, HSG A				
	35,224		Weighted Average				
	3,119	8.85% Pervious Area					
	32,105		91.15% lmp	pervious Are	rea		
т	c Length	Slope	e Velocity	Capacity	Description		
(min	•	(ft/ft		(cfs)			
6.	0				Direct Entry,		


Subcatchment B2: North Yard Area

Summary for Subcatchment C1: Gar. Addition

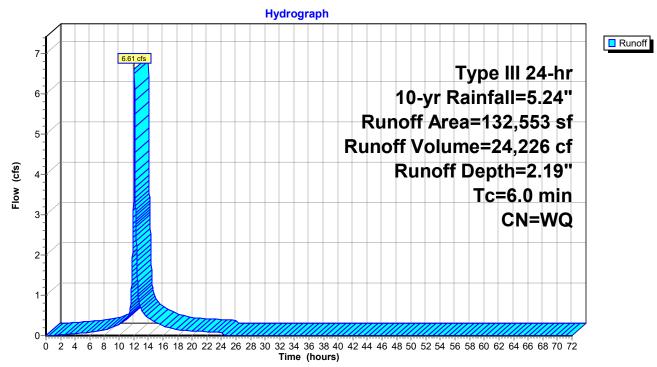
Runoff = 0.67 cfs @ 12.08 hrs, Volume= Routed to Pond INF-A : Addition Roof Gallery 2,377 cf, Depth= 5.00"


Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-yr Rainfall=5.24"

Summary for Subcatchment D1: Garage Area

Runoff = 6.71 cfs @ 12.08 hrs, Volume= Routed to Pond INF-B : Garage Gallery 23,770 cf, Depth= 5.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-yr Rainfall=5.24"


Summary for Subcatchment E1: Southeast Yard Area

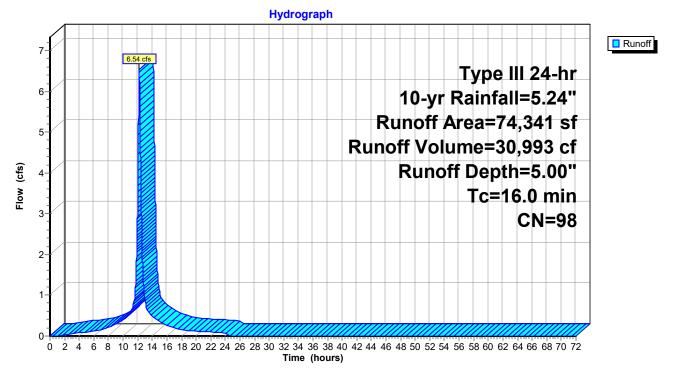
Runoff = 6.61 cfs @ 12.09 hrs, Volume= 24,226 cf, Depth= 2.19" Routed to Link 1L : POI 1

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-yr Rainfall=5.24"

Area (sf)	CN	N Description				
47,097	98	Paved parking, HSG A				
26,832	39	>75% Grass cover, Good, HSG A				
17,412	30	Woods, Good, HSG A				
34,660	55	Woods, Good, HSG B				
6,552	61	>75% Grass cover, Good, HSG B				
132,553		Weighted Average				
85,456		64.47% Pervious Area				
47,097		35.53% Impervious Area				
Tc Length						
(min) (feet)) (ft/					
6.0		Direct Entry,				

Subcatchment E1: Southeast Yard Area

Summary for Subcatchment OFFSITE: Offsite Drainage

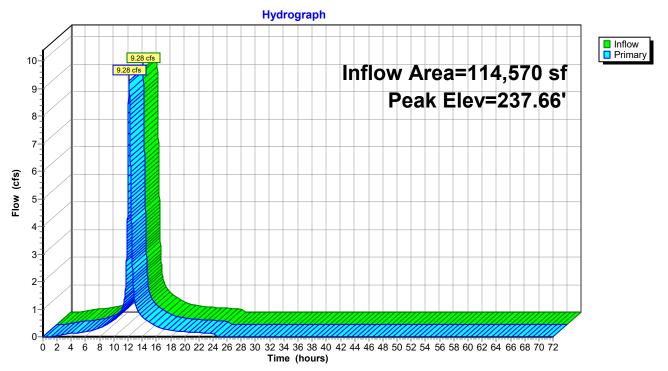

Total subcatchment represents approximately 2,039 LF of ROW (81,560 SF) minus areas that directly contribute to the onsite drainage network.

Runoff	=	6.54 cfs @	12.21 hrs,	Volume=	30,993 cf,	Depth= 5.00"
Routed	d to Pond	d EX DMH : D	MH			

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10-yr Rainfall=5.24"

	A	rea (sf)	CN [Description			
*		74,341	98 E	98 Elm St right-of-way			
		74,341		100.00% Impervious Area			
	Тс	Length	Slope	,	Capacity	Description	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	16.0					Direct Entry,	

Subcatchment OFFSITE: Offsite Drainage


Foxboro DPW-Proposed Conditions Type III 24-hr 10-yr Rainfall=5.24" HydroCAD Design Prop Printed 1/31/2024 Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC Page 43 Summary for Pond DMH-110: DMH-110 Inflow Area = 114,570 sf, 96.31% Impervious, Inflow Depth = 4.83" for 10-yr event 9.28 cfs @ 12.13 hrs, Volume= Inflow = 46.091 cf 46,091 cf, Atten= 0%, Lag= 0.0 min Outflow = 9.28 cfs @ 12.13 hrs, Volume= 9.28 cfs @ 12.13 hrs, Volume= Primary = 46,091 cf Routed to Pond DMH-118 : DMH-118 Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 237.66' @ 12.13 hrs Flood Elev= 241.60' Device Routing Invert Outlet Devices #1 Primary 236.04' 24.0" Round Culvert L= 118.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 236.04' / 235.45' S= 0.0050 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 3.14 sf #2 **24.0" x 24.0" Horiz. Orifice/Grate** C= 0.600 Primary 244.43' Limited to weir flow at low heads

Limited to well now at low neads

Primary OutFlow Max=9.28 cfs @ 12.13 hrs HW=237.66' (Free Discharge) -1=Culvert (Barrel Controls 9.28 cfs @ 4.64 fps)

-2=Orifice/Grate (Controls 0.00 cfs)

Pond DMH-110: DMH-110

Summary for Pond DMH-118: DMH-118

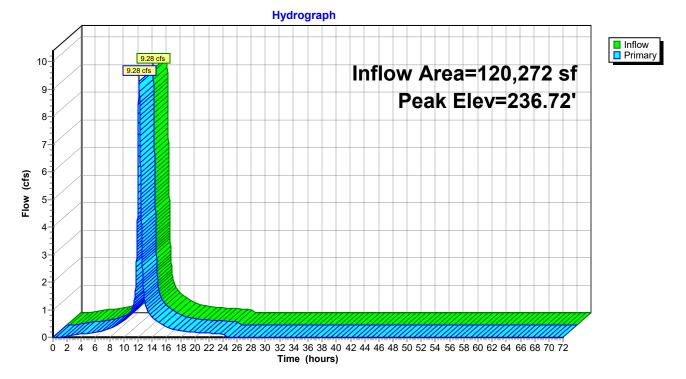
[79] Warning: Submerged Pond DMH-110 Primary device # 1 INLET by 0.68'

 Inflow Area =
 120,272 sf, 96.49% Impervious, Inflow Depth = 4.60" for 10-yr event

 Inflow =
 9.28 cfs @
 12.13 hrs, Volume=
 46,091 cf

 Outflow =
 9.28 cfs @
 12.13 hrs, Volume=
 46,091 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 9.28 cfs @
 12.13 hrs, Volume=
 46,091 cf


 Routed to Pond DMH-125 : DMH-125
 DMH-125

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 236.72' @ 12.13 hrs Flood Elev= 241.41'

Device	Routing	Invert	Outlet Devices
#1	Primary	234.97'	24.0" Round culvert
			L= 37.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 234.97' / 234.78' S= 0.0051 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 3.14 sf
#2	Primary	243.98'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=9.28 cfs @ 12.13 hrs HW=236.71' (Free Discharge) -1=culvert (Barrel Controls 9.28 cfs @ 4.26 fps) -2=Orifice/Grate (Controls 0.00 cfs)

Pond DMH-118: DMH-118

Printed 1/31/2024

Page 45

[58] Hint: Peaked 2.16' above defined flood level [81] Warning: Exceeded Pond DMH-118 by 5.96' @ 12.10 hrs

155,496 sf, 95.28% Impervious, Inflow Depth = 4.59" for 10-yr event Inflow Area = 12.80 cfs @ 12.10 hrs, Volume= Inflow = 59,540 cf 12.80 cfs @ 12.10 hrs, Volume= 59,540 cf, Atten= 0%, Lag= 0.0 min Outflow = 7.75 cfs @ 12.10 hrs, Volume= Primary 54,478 cf = Routed to Link 1L : POI 1 Secondary = 5.05 cfs @ 12.10 hrs, Volume= 5,062 cf Routed to Pond OCS-126 : OCS-126

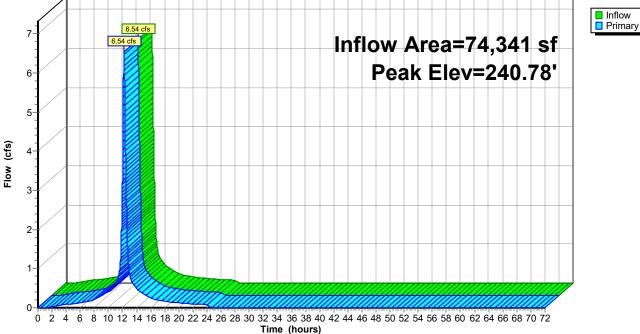
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 242.66' @ 12.10 hrs Flood Elev= 240.50'

Device	Routing	Invert	Outlet Devices
#1	Primary	235.40'	12.0" Round Culvert L= 130.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 235.40' / 233.54' S= 0.0143 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf
#2	Secondary	239.30'	12.0" Round Culvert L= 70.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 239.30' / 237.90' S= 0.0200 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=7.74 cfs @ 12.10 hrs HW=242.65' (Free Discharge) **1=Culvert** (Barrel Controls 7.74 cfs @ 9.86 fps)

Secondary OutFlow Max=5.04 cfs @ 12.10 hrs HW=242.65' (Free Discharge) 2=Culvert (Inlet Controls 5.04 cfs @ 6.42 fps)

HydroCAD Design Prop


Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC

Foxboro DPW-Proposed Conditions *Type III 24-hr 10-yr Rainfall=5.24"* Printed 1/31/2024 <u>C Page 46</u>

Hydrograph Inflow 12.80 cfs Outflow Inflow Area=155,496 sf Primary
 Secondary 14 Peak Elev=242.66' 13 12-11 10-9-7.75 cfs Flow (cfs) 8-7-6-5.05 5 4 3-2 1 0-0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Pond DMH-125: DMH-125

Foxboro DPW-Proposed Conditions Type III 24-hr 10-yr Rainfall=5.24" HydroCAD Design Prop Prepared by Weston and Sampson Printed 1/31/2024 HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC Page 47 Summary for Pond EX DMH: DMH Inflow Area = 74,341 sf,100.00% Impervious, Inflow Depth = 5.00° for 10-yr event Inflow 6.54 cfs @ 12.21 hrs, Volume= = 30.993 cf 30,993 cf, Atten= 0%, Lag= 0.0 min Outflow = 6.54 cfs @ 12.21 hrs, Volume= 6.54 cfs @ 12.21 hrs, Volume= Primary = 30,993 cf Routed to Pond DMH-110 : DMH-110 Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 240.78' @ 12.21 hrs Flood Elev= 244.83' Device Routing Invert Outlet Devices #1 Primary 239.23' 15.0" Round RCP Round 15" L= 20.0' RCP, groove end projecting, Ke= 0.200 Inlet / Outlet Invert= 239.23' / 238.90' S= 0.0165 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 1.23 sf #2 **24.0" x 24.0" Horiz. Orifice/Grate** C= 0.600 Primary 244.58' Limited to weir flow at low heads Primary OutFlow Max=6.54 cfs @ 12.21 hrs HW=240.78' (Free Discharge) -1=RCP_Round 15" (Barrel Controls 6.54 cfs @ 5.51 fps) -2=Orifice/Grate (Controls 0.00 cfs) Pond EX DMH: DMH Hydrograph Inflow Primary 6.54 cfs 7 6.54 cfs Inflow Area=74,341 sf

Summary for Pond INF-A: Addition Roof Gallery

Printed 1/31/2024

Page 48

Inflow Area =	5,702 sf,100.00% Impervious,	Inflow Depth = 5.00" for 10-yr event			
Inflow =	0.67 cfs @ 12.08 hrs, Volume=	2,377 cf			
Outflow =	0.04 cfs @ 13.57 hrs, Volume=	2,377 cf, Atten= 94%, Lag= 89.1 min			
Discarded =	0.04 cfs @ 13.57 hrs, Volume=	2,377 cf			
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf			
Routed to Pond DMH-118 : DMH-118					

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 240.75' @ 13.57 hrs Surf.Area= 1,600 sf Storage= 981 cf Flood Elev= 242.03' Surf.Area= 1,600 sf Storage= 2,022 cf

Plug-Flow detention time= 185.5 min calculated for 2,377 cf (100% of inflow) Center-of-Mass det. time= 185.5 min (932.8 - 747.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	239.70'	1,139 cf	21.50'W x 74.40'L x 2.33'H Field A
			3,732 cf Overall - 885 cf Embedded = 2,848 cf x 40.0% Voids
#2A	240.20'	885 cf	ADS_StormTech SC-310 +Cap x 60 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			60 Chambers in 6 Rows
		2,024 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	239.60'	12.0" Round Culvert
			L= 50.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 239.60' / 239.00' S= 0.0120 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	240.95'	2.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
			0.5' Crest Height
#3	Discarded	239.70'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.04 cfs @ 13.57 hrs HW=240.75' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.04 cfs)

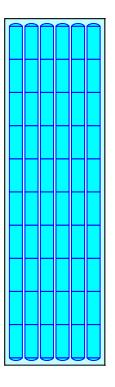
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=239.70' (Free Discharge) -1=Culvert (Passes 0.00 cfs of 0.03 cfs potential flow)

1-2=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

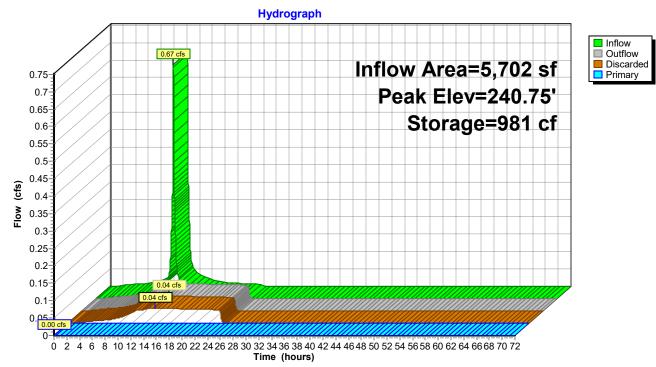
Pond INF-A: Addition Roof Gallery - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-310 +Cap (ADS StormTech® SC-310 with cap length) Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap

34.0" Wide + 6.0" Spacing = 40.0" C-C Row Spacing


10 Chambers/Row x 7.12' Long +0.60' Cap Length x 2 = 72.40' Row Length +12.0" End Stone x 2 = 74.40' Base Length 6 Rows x 34.0" Wide + 6.0" Spacing x 5 + 12.0" Side Stone x 2 = 21.50' Base Width 6.0" Stone Base + 16.0" Chamber Height + 6.0" Stone Cover = 2.33' Field Height

60 Chambers x 14.7 cf = 884.5 cf Chamber Storage


3,732.4 cf Field - 884.5 cf Chambers = 2,847.9 cf Stone x 40.0% Voids = 1,139.2 cf Stone Storage

Chamber Storage + Stone Storage = 2,023.7 cf = 0.046 af Overall Storage Efficiency = 54.2%Overall System Size = $74.40' \times 21.50' \times 2.33'$

60 Chambers 138.2 cy Field 105.5 cy Stone

 $\triangle \triangle \triangle \triangle \triangle \triangle \triangle$

Pond INF-A: Addition Roof Gallery

Summary for Pond INF-B: Garage Gallery

Printed 1/31/2024

Page 51

Inflow Area = 57,016 sf,100.00% Impervious, Inflow Depth = 5.00° for 10-yr event 6.71 cfs @ 12.08 hrs, Volume= Inflow = 23.770 cf 23,770 cf, Atten= 9%, Lag= 2.1 min Outflow = 6.14 cfs @ 12.12 hrs, Volume= Discarded = 0.10 cfs @ 12.12 hrs, Volume= 12,224 cf Primary = 6.04 cfs @ 12.12 hrs, Volume= 11,546 cf Routed to Pond OCS-216 : OCS-216

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 239.61' @ 12.12 hrs Surf.Area= 3,590 sf Storage= 6,951 cf Flood Elev= 240.40' Surf.Area= 3,590 sf Storage= 7,727 cf

Plug-Flow detention time= 284.8 min calculated for 23,767 cf (100% of inflow) Center-of-Mass det. time= 284.9 min (1,032.1 - 747.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	236.65'	3,225 cf	34.75'W x 103.30'L x 3.50'H Field A
			12,563 cf Overall - 4,502 cf Embedded = 8,061 cf x 40.0% Voids
#2A	237.15'	4,502 cf	ADS_StormTech SC-740 +Cap x 98 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			98 Chambers in 7 Rows
		7,727 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	237.65'	24.0" Round Culvert
			L= 50.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 237.65' / 237.40' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf
#2	Device 1	238.85'	2.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
			0.5' Crest Height
#3	Discarded	236.65'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.10 cfs @ 12.12 hrs HW=239.61' (Free Discharge) **-3=Exfiltration** (Exfiltration Controls 0.10 cfs)

Primary OutFlow Max=6.03 cfs @ 12.12 hrs HW=239.61' (Free Discharge) -1=Culvert (Passes 6.03 cfs of 11.06 cfs potential flow)

1-2=Sharp-Crested Rectangular Weir (Weir Controls 6.03 cfs @ 3.38 fps)

Pond INF-B: Garage Gallery - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech® SC-740 with cap length) Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

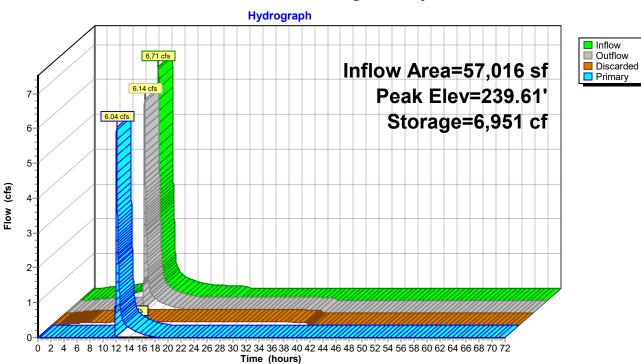
14 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 101.30' Row Length +12.0" End Stone x 2 = 103.30' Base Length 7 Rows x 51.0" Wide + 6.0" Spacing x 6 + 12.0" Side Stone x 2 = 34.75' Base Width 6.0" Stone Base + 30.0" Chamber Height + 6.0" Stone Cover = 3.50' Field Height

98 Chambers x 45.9 cf = 4,502.1 cf Chamber Storage

12,563.5 cf Field - 4,502.1 cf Chambers = 8,061.3 cf Stone x 40.0% Voids = 3,224.5 cf Stone Storage

Chamber Storage + Stone Storage = 7,726.7 cf = 0.177 af Overall Storage Efficiency = 61.5%Overall System Size = $103.30' \times 34.75' \times 3.50'$

98 Chambers 465.3 cy Field 298.6 cy Stone


-	-	-	-	-	-	-
_				_		
-	-	-	-	-	-	-

 $\square \square \square$

HydroCAD Design Prop

Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC

Foxboro DPW-Proposed Conditions *Type III 24-hr 10-yr Rainfall=5.24"* Printed 1/31/2024 <u>C Page 53</u>

Pond INF-B: Garage Gallery

Printed 1/31/2024

Page 54

Inflow Area = 52,591 sf, 96.67% Impervious, Inflow Depth = 4.86" for 10-yr event 6.01 cfs @ 12.08 hrs, Volume= Inflow = 21.304 cf 21,304 cf, Atten= 97%, Lag= 207.3 min Outflow = 0.20 cfs @ 15.54 hrs, Volume= Discarded = 0.20 cfs @ 15.54 hrs, Volume= 21,304 cf Primary = 0.00 cfs @ 0.00 hrs, Volume= 0 cf Routed to Pond OCS-311 : OCS-311

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 243.47' @ 15.54 hrs Surf.Area= 7,709 sf Storage= 11,656 cf Flood Elev= 244.80' Surf.Area= 7,709 sf Storage= 16,746 cf

Plug-Flow detention time= 509.1 min calculated for 21,304 cf (100% of inflow) Center-of-Mass det. time= 509.1 min (1,257.1 - 748.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	241.30'	6,823 cf	58.50'W x 131.78'L x 3.50'H Field A
			26,981 cf Overall - 9,923 cf Embedded = 17,058 cf x 40.0% Voids
#2A	241.80'	9,923 cf	ADS_StormTech SC-740 +Cap x 216 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			216 Chambers in 12 Rows
		16,746 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	242.80'	12.0" Round Culvert
			L= 100.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 242.80' / 242.30' S= 0.0050 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf
#2	Device 1	244.05'	2.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
			0.5' Crest Height
#3	Discarded	241.30'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.20 cfs @ 15.54 hrs HW=243.47' (Free Discharge) **-3=Exfiltration** (Exfiltration Controls 0.20 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=241.30' (Free Discharge) -1=Culvert (Controls 0.00 cfs)

1-2=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Pond INF-C: Bus Parking Gallery - Chamber Wizard Field A

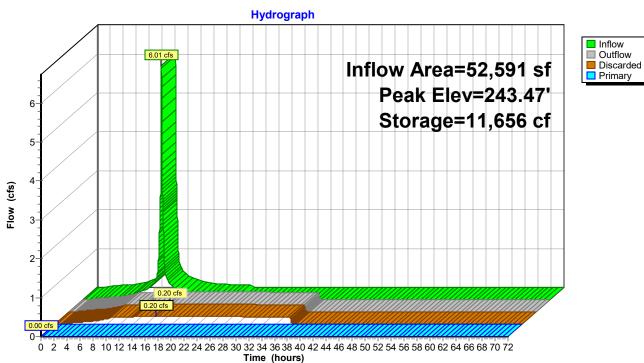
Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech® SC-740 with cap length) Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

18 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 129.78' Row Length +12.0" End Stone x 2 = 131.78' Base Length 12 Rows x 51.0" Wide + 6.0" Spacing x 11 + 12.0" Side Stone x 2 = 58.50' Base Width 6.0" Stone Base + 30.0" Chamber Height + 6.0" Stone Cover = 3.50' Field Height

216 Chambers x 45.9 cf = 9,923.0 cf Chamber Storage

26,981.3 cf Field - 9,923.0 cf Chambers = 17,058.2 cf Stone x 40.0% Voids = 6,823.3 cf Stone Storage


Chamber Storage + Stone Storage = 16,746.3 cf = 0.384 af Overall Storage Efficiency = 62.1% Overall System Size = 131.78' x 58.50' x 3.50'

216 Chambers 999.3 cy Field 631.8 cy Stone

	D	0	0	0	0	0	D	0	0	0	0
	H			Н	H	H	H				H
	Ц										
	H										
	н	_									
	H										
		_									
	H	-		Н	Н	Н	Н		H	Н	H
	H										
	H	-									
U			U	U	U	U	U	U	U	U	U

HydroCAD Design Prop

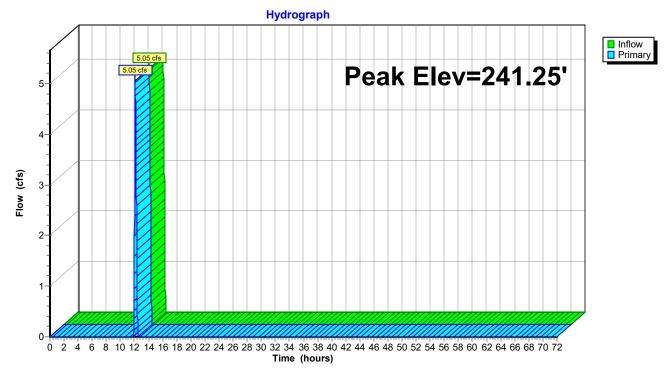
Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC

Pond INF-C: Bus Parking Gallery

Summary for Pond OCS-126: OCS-126

[57] Hint: Peaked at 241.25' (Flood elevation advised)[81] Warning: Exceeded Pond DMH-125 by 5.52' @ 0.00 hrs

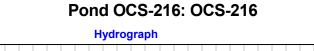
Inflow	=	5.05 cfs @	12.10 hrs,	Volume=
Outflow	=	5.05 cfs @	12.10 hrs,	Volume=
Primary	=	5.05 cfs @	12.10 hrs,	Volume=
Routed	l to L	ink 1L : POI 1		

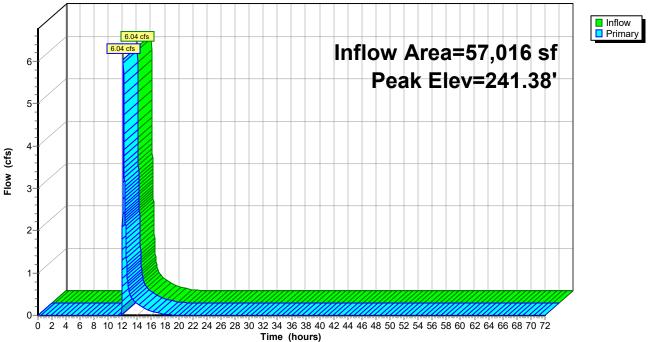

5,062 cf 5,062 cf, Atten= 0%, Lag= 0.0 min 5.062 cf

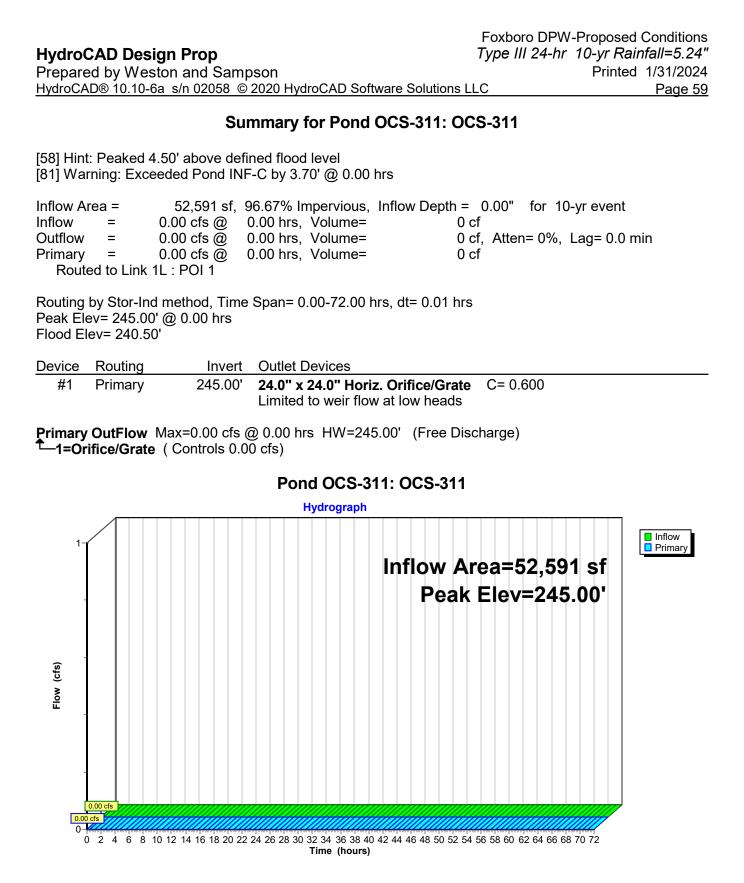
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 241.25' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	240.92'	24.0" x 24.0" Horiz. Overflow Grate Limited to weir flow at low heads	C= 0.600

Primary OutFlow Max=5.04 cfs @ 12.10 hrs HW=241.25' (Free Discharge) ←1=Overflow Grate (Weir Controls 5.04 cfs @ 1.89 fps)

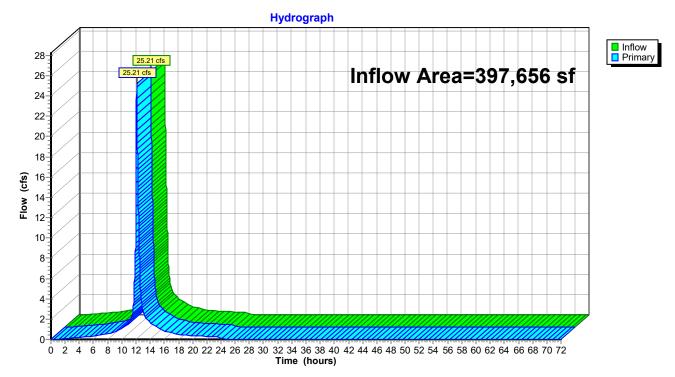

Pond OCS-126: OCS-126




HydroCAD Design PropFoxboro DPW-Proposed Condit Type III 24-hr 10-yr Rainfall=5Prepared by Weston and SampsonPrinted 1/31/2HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLCPag							
Summary for Pond OCS-216: OCS-216							
[58] Hint: Peaked 0.88' above defined flood level [81] Warning: Exceeded Pond INF-B by 4.35' @ 0.00 hrs							
Inflow Area = 57,016 sf,100.00% Impervious, Inflow Depth = 2.43" for 10-yr event Inflow = 6.04 cfs @ 12.12 hrs, Volume= 11,546 cf Outflow = 6.04 cfs @ 12.12 hrs, Volume= 11,546 cf, Atten= 0%, Lag= 0.0 min Primary = 6.04 cfs @ 12.12 hrs, Volume= 11,546 cf, Atten= 0%, Lag= 0.0 min Primary = 6.04 cfs @ 12.12 hrs, Volume= 11,546 cf Routed to Link 1L : POI 1 12.12 hrs, Volume= 11,546 cf							
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 241.38' @ 12.12 hrs Flood Elev= 240.50'							
Device Routing Invert Outlet Devices #1 Primary 241.00' 24.0" x 24.0" Horiz. Orifice/Grate C= 0.600							

Limited to weir flow at low heads

Primary OutFlow Max=6.03 cfs @ 12.12 hrs HW=241.38' (Free Discharge) **1=Orifice/Grate** (Weir Controls 6.03 cfs @ 2.01 fps)



Summary for Link 1L: POI 1

Inflow Area =	397,656 sf, 76.22% Impervious,	Inflow Depth = 2.88" for 10-yr event
Inflow =	25.21 cfs @ 12.10 hrs, Volume=	95,313 cf
Primary =	25.21 cfs @ 12.10 hrs, Volume=	95,313 cf, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

HydroCAD Design Prop Prepared by Weston and Sampson <u>HydroCAD® 10.10-6a_s/n 02058_© 2020 Hyd</u>	Foxboro DPW-Proposed Conditions <i>Type III 24-hr 25-yr Rainfall=6.37"</i> Printed 1/31/2024 IroCAD Software Solutions LLC Page 61
Runoff by SCS T	0-72.00 hrs, dt=0.01 hrs, 7201 points R-20 method, UH=SCS, Weighted-Q d method . Pond routing by Stor-Ind method
Subcatchment A1: Bus Parking Area	Runoff Area=52,591 sf 96.67% Impervious Runoff Depth=5.97" Tc=6.0 min CN=WQ Runoff=7.33 cfs 26,155 cf
Subcatchment B1: Frontage Areas	Runoff Area=40,229 sf 89.49% Impervious Runoff Depth=5.55" Tc=6.0 min CN=WQ Runoff=5.17 cfs 18,591 cf
Subcatchment B2: North Yard Area	Runoff Area=35,224 sf 91.15% Impervious Runoff Depth=5.64" Tc=6.0 min CN=WQ Runoff=4.61 cfs 16,549 cf
Subcatchment C1: Gar. Addition	Runoff Area=5,702 sf 100.00% Impervious Runoff Depth=6.13" Tc=6.0 min CN=98 Runoff=0.82 cfs 2,913 cf
Subcatchment D1: Garage Area	Runoff Area=57,016 sf 100.00% Impervious Runoff Depth=6.13" Tc=6.0 min CN=98 Runoff=8.17 cfs 29,133 cf
Subcatchment E1: Southeast Yard Area	Runoff Area=132,553 sf 35.53% Impervious Runoff Depth=2.87" Tc=6.0 min CN=WQ Runoff=8.64 cfs 31,720 cf
Subcatchment OFFSITE: Offsite Drainage	Runoff Area=74,341 sf 100.00% Impervious Runoff Depth=6.13" Tc=16.0 min CN=98 Runoff=7.96 cfs 37,985 cf
Pond DMH-110: DMH-110	Peak Elev=237.93' Inflow=11.32 cfs 56,577 cf Outflow=11.32 cfs 56,577 cf
Pond DMH-118: DMH-118	Peak Elev=236.97' Inflow=11.32 cfs 56,667 cf Outflow=11.32 cfs 56,667 cf
Pond DMH-125: DMH-125 Primary=8.80 cfs 65	Peak Elev=245.01' Inflow=15.61 cfs 73,215 cf ,243 cf Secondary=6.82 cfs 7,973 cf Outflow=15.61 cfs 73,215 cf
Pond EX DMH: DMH	Peak Elev=241.19' Inflow=7.96 cfs 37,985 cf Outflow=7.96 cfs 37,985 cf
Pond INF-A: Addition Roof Gallery Discarded=0.	Peak Elev=240.97' Storage=1,230 cf Inflow=0.82 cfs 2,913 cf 04 cfs 2,823 cf Primary=0.03 cfs 90 cf Outflow=0.08 cfs 2,913 cf
Pond INF-B: Garage Gallery Discarded=0.10 cfs	Peak Elev=239.73' Storage=7,122 cf Inflow=8.17 cfs 29,133 cf 12,709 cf Primary=7.61 cfs 16,424 cf Outflow=7.71 cfs 29,133 cf
Pond INF-C: Bus Parking Gallery Discarded=0.21 c	Peak Elev=244.12' Storage=14,602 cf Inflow=7.33 cfs 26,155 cf fs 25,293 cf Primary=0.14 cfs 861 cf Outflow=0.35 cfs 26,155 cf
Pond OCS-126: OCS-126	Peak Elev=241.33' Inflow=6.82 cfs 7,973 cf Outflow=6.82 cfs 7,973 cf
Pond OCS-216: OCS-216	Peak Elev=241.44' Inflow=7.61 cfs 16,424 cf Outflow=7.61 cfs 16,424 cf

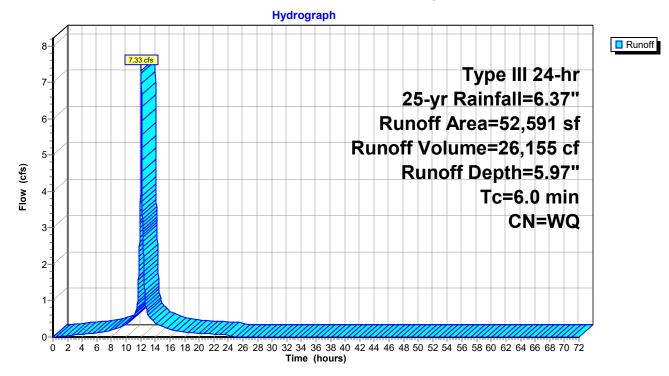
Peak Elev=245.03' Inflow=0.14 cfs 861 cf Outflow=0.14 cfs 861 cf

Link 1L: POI 1

Inflow=31.68 cfs 122,221 cf Primary=31.68 cfs 122,221 cf

Total Runoff Area = 397,656 sf Runoff Volume = 163,047 cf Average Runoff Depth = 4.92" 23.78% Pervious = 94,551 sf 76.22% Impervious = 303,105 sf

Pond OCS-311: OCS-311


Summary for Subcatchment A1: Bus Parking Area

Runoff = 7.33 cfs @ 12.08 hrs, Volume= Routed to Pond INF-C : Bus Parking Gallery 26,155 cf, Depth= 5.97"

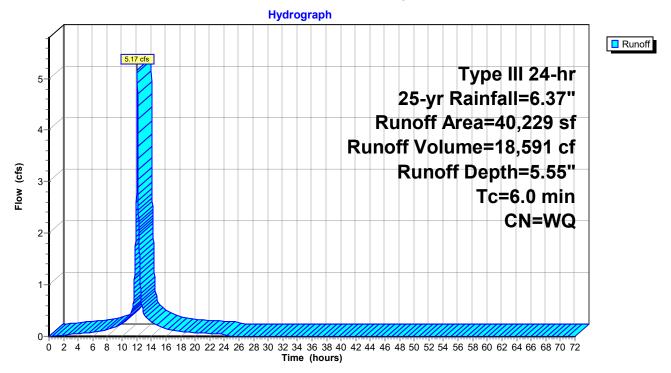
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-yr Rainfall=6.37"

	Area (sf)	CN	N Description					
*	50,842	98	Paved park	ing				
	673	61	>75% Gras	s cover, Go	iood, HSG B			
	1,076	39	>75% Gras	s cover, Go	lood, HSG A			
	52,591		Weighted A	verage				
	1,749		3.33% Perv	vious Area				
	50,842		96.67% Imp	pervious Ar	rea			
T (min	5	Slope (ft/ft		Capacity (cfs)	1			
6.	0		·		Direct Entry,			

Subcatchment A1: Bus Parking Area

Summary for Subcatchment B1: Frontage Areas

5.17 cfs @ 12.08 hrs, Volume= Runoff = Routed to Pond DMH-110 : DMH-110

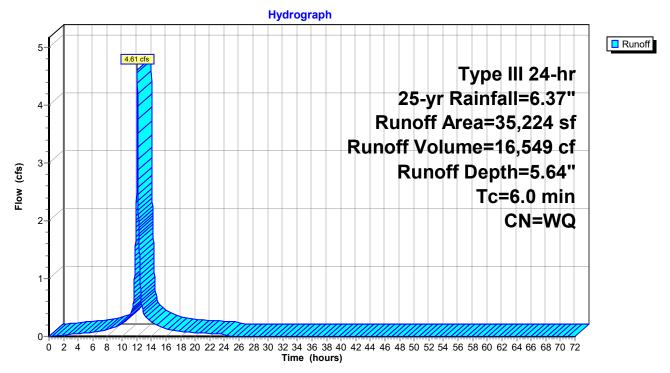

18,591 cf, Depth= 5.55"

Page 64

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-yr Rainfall=6.37"

_	A	rea (sf)	CN	Description		
*		36,002	98	Paved area	s & roofs	
_		4,227	39	>75% Gras	s cover, Go	ood, HSG A
		40,229		Weighted A	verage	
		4,227		10.51% Per	vious Area	а
		36,002		89.49% Imp	pervious Ar	rea
_	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	1
	6.0					Direct Entry,

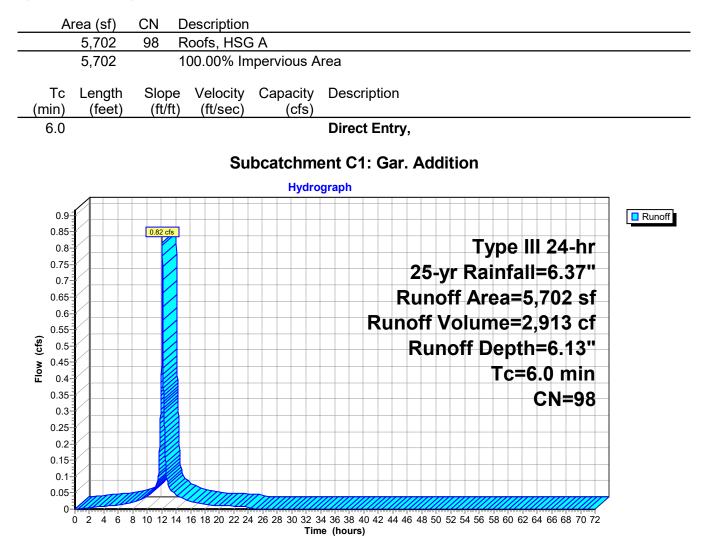
Subcatchment B1: Frontage Areas


Summary for Subcatchment B2: North Yard Area

Runoff = 4.61 cfs @ 12.08 hrs, Volume= Routed to Pond DMH-125 : DMH-125 16,549 cf, Depth= 5.64"

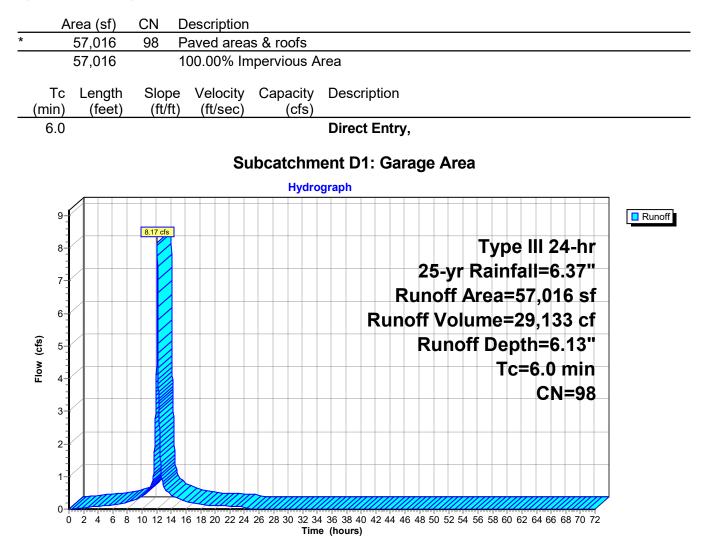
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-yr Rainfall=6.37"

	A	rea (sf)	CN I	CN Description						
*		32,105	98 I	Paved area	s & roofs					
		3,119	39 :	>75% Grass cover, Good, HSG A						
		35,224	١	Neighted A	verage					
		3,119	8	3.85% Perv	ious Area					
		32,105	9	91.15% Imp	pervious Are	ea				
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	6.0					Direct Entry,				


Subcatchment B2: North Yard Area

Summary for Subcatchment C1: Gar. Addition

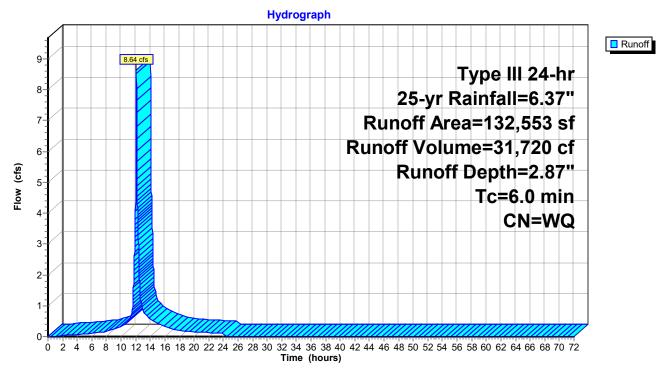
Runoff = 0.82 cfs @ 12.08 hrs, Volume= Routed to Pond INF-A : Addition Roof Gallery 2,913 cf, Depth= 6.13"


Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-yr Rainfall=6.37"

Summary for Subcatchment D1: Garage Area

Runoff = 8.17 cfs @ 12.08 hrs, Volume= Routed to Pond INF-B : Garage Gallery 29,133 cf, Depth= 6.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-yr Rainfall=6.37"


Summary for Subcatchment E1: Southeast Yard Area

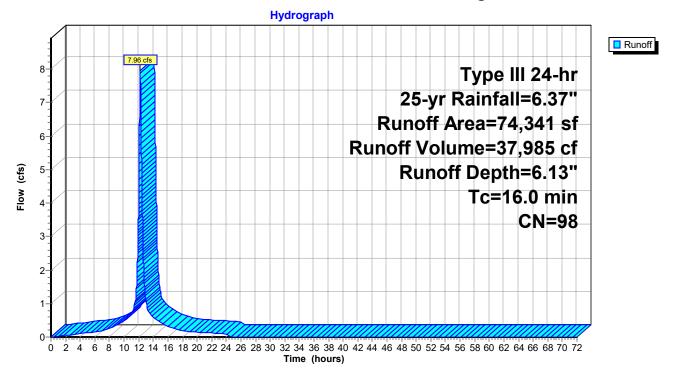
Runoff = 8.64 cfs @ 12.09 hrs, Volume= 31,720 cf, Depth= 2.87" Routed to Link 1L : POI 1

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-yr Rainfall=6.37"

Area	(sf) (CN Description					
47	,097	98 F	aved parki	ing, HSG A	L .		
26	,832	39 >	75% Grass	s cover, Go	ood, HSG A		
17	,412	30 V	Voods, Go	od, HSG A			
34	,660	55 V	Voods, Go	od, HSG B			
6	,552	61 >	75% Grass	s cover, Go	ood, HSG B		
132	,553	V	Veighted A	verage			
85	,456	6	4.47% Per	vious Area			
47	,097	3	5.53% Imp	ervious Are	ea		
Tc Le	ength	Slope	Velocity	Capacity	Description		
	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description		
/		(1011)	(INSEC)	(05)			
6.0					Direct Entry,		

Subcatchment E1: Southeast Yard Area

Summary for Subcatchment OFFSITE: Offsite Drainage


Total subcatchment represents approximately 2,039 LF of ROW (81,560 SF) minus areas that directly contribute to the onsite drainage network.

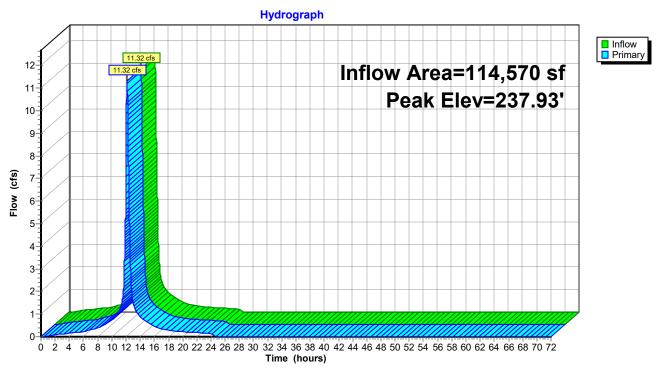
Runoff	=	7.96 cfs @	12.21 hrs,	Volume=	37
Route	d to Po	ond EX DMH : D	MH		

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 25-yr Rainfall=6.37"

	Area	ı (sf)	CN D	escription			
*	74	,341	98 E	Elm St right-of-way			
	74	,341	1	00.00% Im	npervious A	vrea	
	Tc Le	ength	Slope	Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	16.0					Direct Entry,	

Subcatchment OFFSITE: Offsite Drainage

87,985 cf, Depth= 6.13"


Foxboro DPW-Proposed Conditions Type III 24-hr 25-yr Rainfall=6.37" HydroCAD Design Prop Printed 1/31/2024 Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC Page 70

Summary for Pond DMH-110: DMH-110

Inflow Area = 114,570 sf, 96.31% Impervious, Inflow Depth = 5.93" for 25-yr event 11.32 cfs @ 12.13 hrs, Volume= Inflow = 56.577 cf 56,577 cf, Atten= 0%, Lag= 0.0 min Outflow = 11.32 cfs @ 12.13 hrs, Volume= 11.32 cfs @ 12.13 hrs, Volume= Primary = 56,577 cf Routed to Pond DMH-118 : DMH-118 Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 237.93' @ 12.13 hrs Flood Elev= 241.60' Device Routing Invert Outlet Devices #1 Primary 236.04' 24.0" Round Culvert L= 118.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 236.04' / 235.45' S= 0.0050 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 3.14 sf #2 Primary **24.0" x 24.0" Horiz. Orifice/Grate** C= 0.600 244.43' Limited to weir flow at low heads

Primary OutFlow Max=11.33 cfs @ 12.13 hrs HW=237.93' (Free Discharge) -1=Culvert (Inlet Controls 11.33 cfs @ 3.69 fps) -2=Orifice/Grate (Controls 0.00 cfs)

Pond DMH-110: DMH-110

Summary for Pond DMH-118: DMH-118

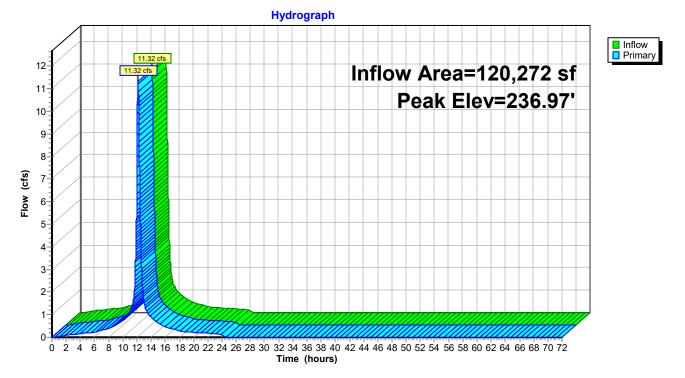
[79] Warning: Submerged Pond DMH-110 Primary device # 1 INLET by 0.93'

 Inflow Area =
 120,272 sf, 96.49% Impervious, Inflow Depth =
 5.65" for 25-yr event

 Inflow =
 11.32 cfs @
 12.13 hrs, Volume=
 56,667 cf

 Outflow =
 11.32 cfs @
 12.13 hrs, Volume=
 56,667 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 11.32 cfs @
 12.13 hrs, Volume=
 56,667 cf


 Routed to Pond DMH-125 : DMH-125
 DMH-125

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 236.97' @ 12.13 hrs Flood Elev= 241.41'

Device	Routing	Invert	Outlet Devices
#1	Primary	234.97'	24.0" Round culvert
			L= 37.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 234.97' / 234.78' S= 0.0051 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 3.14 sf
#2	Primary	243.98'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=11.32 cfs @ 12.13 hrs HW=236.97' (Free Discharge) -1=culvert (Barrel Controls 11.32 cfs @ 4.49 fps) -2=Orifice/Grate (Controls 0.00 cfs)

Pond DMH-118: DMH-118

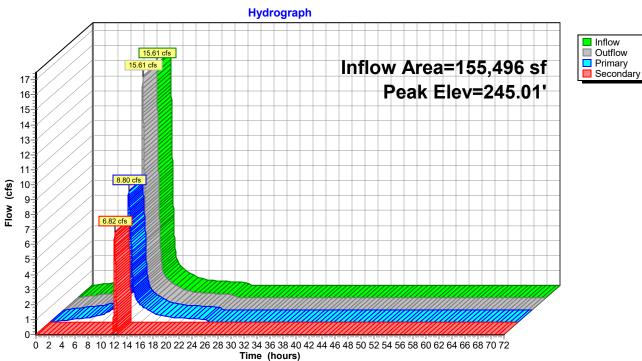
Summary for Pond DMH-125: DMH-125

Page 72

[58] Hint: Peaked 4.51' above defined flood level [81] Warning: Exceeded Pond DMH-118 by 8.06' @ 12.10 hrs

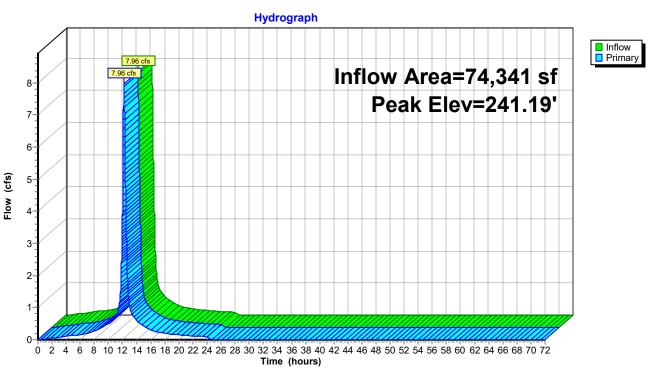
155,496 sf, 95.28% Impervious, Inflow Depth = 5.65" for 25-yr event Inflow Area = 15.61 cfs @ 12.10 hrs, Volume= Inflow = 73,215 cf 15.61 cfs @ 12.10 hrs, Volume= 73,215 cf, Atten= 0%, Lag= 0.0 min Outflow = 8.80 cfs @ 12.10 hrs, Volume= Primary 65.243 cf = Routed to Link 1L : POI 1 Secondary = 6.82 cfs @ 12.10 hrs, Volume= 7,973 cf Routed to Pond OCS-126 : OCS-126

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 245.01' @ 12.10 hrs Flood Elev= 240.50'


Device	Routing	Invert	Outlet Devices
#1	Primary	235.40'	12.0" Round Culvert L= 130.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 235.40' / 233.54' S= 0.0143 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf
#2	Secondary	239.30'	12.0" Round Culvert L= 70.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 239.30' / 237.90' S= 0.0200 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=8.79 cfs @ 12.10 hrs HW=245.00' (Free Discharge) **1**=**Culvert** (Barrel Controls 8.79 cfs @ 11.19 fps)

Secondary OutFlow Max=6.81 cfs @ 12.10 hrs HW=245.00' (Free Discharge) 2=Culvert (Inlet Controls 6.81 cfs @ 8.67 fps)


HydroCAD Design Prop

Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC

Pond DMH-125: DMH-125

Foxboro DPW-Proposed Conditions Type III 24-hr 25-yr Rainfall=6.37" HydroCAD Design Prop Printed 1/31/2024 Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC Page 74 Summary for Pond EX DMH: DMH 74,341 sf,100.00% Impervious, Inflow Depth = 6.13" for 25-yr event Inflow Area = Inflow 7.96 cfs @ 12.21 hrs, Volume= = 37.985 cf 37,985 cf, Atten= 0%, Lag= 0.0 min Outflow = 7.96 cfs @ 12.21 hrs, Volume= 7.96 cfs @ 12.21 hrs, Volume= Primary = 37,985 cf Routed to Pond DMH-110 : DMH-110 Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 241.19' @ 12.21 hrs Flood Elev= 244.83' Device Routing Invert Outlet Devices #1 Primary 239.23' 15.0" Round RCP Round 15" L= 20.0' RCP, groove end projecting, Ke= 0.200 Inlet / Outlet Invert= 239.23' / 238.90' S= 0.0165 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 1.23 sf #2 **24.0" x 24.0" Horiz. Orifice/Grate** C= 0.600 Primary 244.58' Limited to weir flow at low heads Primary OutFlow Max=7.96 cfs @ 12.21 hrs HW=241.19' (Free Discharge) -1=RCP_Round 15" (Barrel Controls 7.96 cfs @ 6.48 fps) -2=Orifice/Grate (Controls 0.00 cfs)

Pond EX DMH: DMH

Summary for Pond INF-A: Addition Roof Gallery

Printed 1/31/2024

Page 75

Inflow Area =	5,702 sf,100.00% Impervious,	Inflow Depth = 6.13" for 25-yr event					
Inflow =	0.82 cfs @ 12.08 hrs, Volume=	2,913 cf					
Outflow =	0.08 cfs @ 12.90 hrs, Volume=	2,913 cf, Atten= 91%, Lag= 49.1 min					
Discarded =	low = 0.82 cfs @ 12.08 hrs, Volume= 2,913 cf tflow = 0.08 cfs @ 12.90 hrs, Volume= 2,913 cf, Atten= 91%, Lag= 49.1 min scarded = 0.04 cfs @ 12.90 hrs, Volume= 2,823 cf mary = 0.03 cfs @ 12.90 hrs, Volume= 90 cf						
Primary =	nflow=0.82 cfs @12.08 hrs, Volume=2,913 cfDutflow=0.08 cfs @12.90 hrs, Volume=2,913 cf, Atten= 91%, Lag= 49.1 minDiscarded=0.04 cfs @12.90 hrs, Volume=2,823 cf						
Routed to Pond DMH-118 DMH-118							

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 240.97' @ 12.90 hrs Surf.Area= 1,600 sf Storage= 1,230 cf Flood Elev= 242.03' Surf.Area= 1,600 sf Storage= 2,022 cf

Plug-Flow detention time= 226.7 min calculated for 2,913 cf (100% of inflow) Center-of-Mass det. time= 226.6 min (970.9 - 744.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	239.70'	1,139 cf	21.50'W x 74.40'L x 2.33'H Field A
			3,732 cf Overall - 885 cf Embedded = 2,848 cf x 40.0% Voids
#2A	240.20'	885 cf	ADS_StormTech SC-310 +Cap x 60 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			60 Chambers in 6 Rows
		2,024 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	239.60'	12.0" Round Culvert
			L= 50.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 239.60' / 239.00' S= 0.0120 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	240.95'	2.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
			0.5' Crest Height
#3	Discarded	239.70'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.04 cfs @ 12.90 hrs HW=240.97' (Free Discharge) **-3=Exfiltration** (Exfiltration Controls 0.04 cfs)

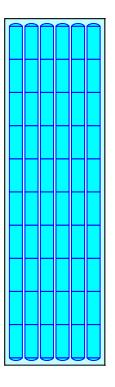
Primary OutFlow Max=0.03 cfs @ 12.90 hrs HW=240.97' (Free Discharge) -**1=Culvert** (Passes 0.03 cfs of 2.79 cfs potential flow)

1-2=Sharp-Crested Rectangular Weir (Weir Controls 0.03 cfs @ 0.50 fps)

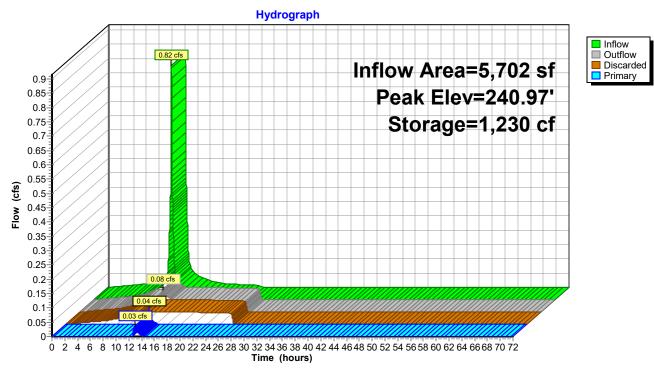
Pond INF-A: Addition Roof Gallery - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-310 +Cap (ADS StormTech® SC-310 with cap length) Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap

34.0" Wide + 6.0" Spacing = 40.0" C-C Row Spacing


10 Chambers/Row x 7.12' Long +0.60' Cap Length x 2 = 72.40' Row Length +12.0" End Stone x 2 = 74.40' Base Length 6 Rows x 34.0" Wide + 6.0" Spacing x 5 + 12.0" Side Stone x 2 = 21.50' Base Width 6.0" Stone Base + 16.0" Chamber Height + 6.0" Stone Cover = 2.33' Field Height

60 Chambers x 14.7 cf = 884.5 cf Chamber Storage


3,732.4 cf Field - 884.5 cf Chambers = 2,847.9 cf Stone x 40.0% Voids = 1,139.2 cf Stone Storage

Chamber Storage + Stone Storage = 2,023.7 cf = 0.046 af Overall Storage Efficiency = 54.2%Overall System Size = $74.40' \times 21.50' \times 2.33'$

60 Chambers 138.2 cy Field 105.5 cy Stone

 $\triangle \triangle \triangle \triangle \triangle \triangle \triangle$

Pond INF-A: Addition Roof Gallery

Summary for Pond INF-B: Garage Gallery

Printed 1/31/2024

Page 78

Inflow Area =	57,016 sf,100.00% Impervious,	Inflow Depth = 6.13" for 25-yr event
Inflow =	8.17 cfs @ 12.08 hrs, Volume=	29,133 cf
Outflow =	7.71 cfs @ 12.11 hrs, Volume=	29,133 cf, Atten= 6%, Lag= 1.7 min
Inflow = 8.17 cfs @ 12.08 hrs, Volume= 29,133 cf		12,709 cf
Inflow = 8.17 cfs @ 12.08 hrs, Volume= 29,133 cf Outflow = 7.71 cfs @ 12.11 hrs, Volume= 29,133 cf, Atten= 6%, Lag= 1.7 mir Discarded = 0.10 cfs @ 12.11 hrs, Volume= 12,709 cf Primary = 7.61 cfs @ 12.11 hrs, Volume= 16,424 cf		
Routed to Pond	d OCS-216 : OCS-216	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 239.73' @ 12.11 hrs Surf.Area= 3,590 sf Storage= 7,122 cf Flood Elev= 240.40' Surf.Area= 3,590 sf Storage= 7,727 cf

Plug-Flow detention time= 248.1 min calculated for 29,129 cf (100% of inflow) Center-of-Mass det. time= 248.2 min (992.5 - 744.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	236.65'	3,225 cf	34.75'W x 103.30'L x 3.50'H Field A
			12,563 cf Overall - 4,502 cf Embedded = 8,061 cf x 40.0% Voids
#2A	237.15'	4,502 cf	ADS_StormTech SC-740 +Cap x 98 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			98 Chambers in 7 Rows
		7,727 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	237.65'	24.0" Round Culvert
			L= 50.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 237.65' / 237.40' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf
#2	Device 1	238.85'	2.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
			0.5' Crest Height
#3	Discarded	236.65'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.10 cfs @ 12.11 hrs HW=239.73' (Free Discharge) **Galaxies** (Exfiltration Controls 0.10 cfs)

Primary OutFlow Max=7.60 cfs @ 12.11 hrs HW=239.73' (Free Discharge) -**1=Culvert** (Passes 7.60 cfs of 11.99 cfs potential flow)

1-2=Sharp-Crested Rectangular Weir (Weir Controls 7.60 cfs @ 3.72 fps)

Pond INF-B: Garage Gallery - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech® SC-740 with cap length) Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

14 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 101.30' Row Length +12.0" End Stone x 2 = 103.30' Base Length 7 Rows x 51.0" Wide + 6.0" Spacing x 6 + 12.0" Side Stone x 2 = 34.75' Base Width 6.0" Stone Base + 30.0" Chamber Height + 6.0" Stone Cover = 3.50' Field Height

98 Chambers x 45.9 cf = 4,502.1 cf Chamber Storage

12,563.5 cf Field - 4,502.1 cf Chambers = 8,061.3 cf Stone x 40.0% Voids = 3,224.5 cf Stone Storage

Chamber Storage + Stone Storage = 7,726.7 cf = 0.177 af Overall Storage Efficiency = 61.5% Overall System Size = 103.30' x 34.75' x 3.50'

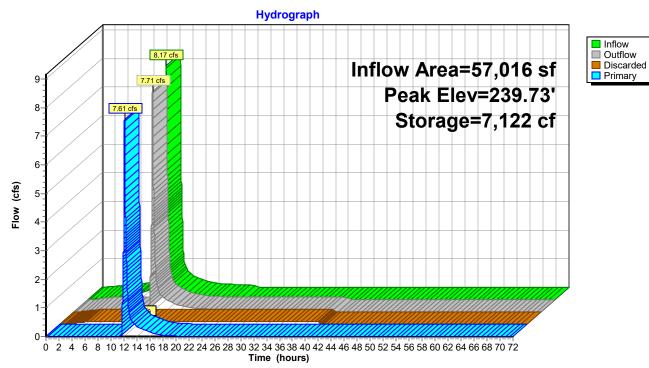

98 Chambers 465.3 cy Field 298.6 cy Stone

Image: selection of the selection										
Image: Section of the sectio										
Image: Sector										
Image: selection of the										
Image: selection of the selection										
Image: selection of the se										
Image: state										
Image: Sector										
Image: state										

 $\square \square \square$

HydroCAD Design Prop

Prepared by Weston and Sampson HydroCAD® <u>10.10-6a</u> s/n 02058 © 2020 HydroCAD Software Solutions LLC

Pond INF-B: Garage Gallery

Printed 1/31/2024

Page 81

Inflow Area =	low = 7.33 cfs @ 12.08 hrs, Volume= 26,155 cf utflow = 0.35 cfs @ 14.33 hrs, Volume= 26,155 cf, Atten= 95%, Lag= 134.7 min scarded = 0.21 cfs @ 14.33 hrs, Volume= 25,293 cf				
Inflow =	nflow=7.33 cfs @12.08 hrs, Volume=26,155 cfDutflow=0.35 cfs @14.33 hrs, Volume=26,155 cf, Atten= 95%, Lag= 134.7 minDiscarded=0.21 cfs @14.33 hrs, Volume=25,293 cfPrimary=0.14 cfs @14.33 hrs, Volume=861 cf				
Outflow =	0.35 cfs @ 14.33 hrs, Volume=	26,155 cf, Atten= 95%, Lag= 134.7 min			
Inflow = 7.33 cfs @ 12.08 hrs, Volume= 26,155 cf Outflow = 0.35 cfs @ 14.33 hrs, Volume= 26,155 cf, Atten= 95%, Lag= 134.7 min Discarded = 0.21 cfs @ 14.33 hrs, Volume= 25,293 cf Primary = 0.14 cfs @ 14.33 hrs, Volume= 861 cf					
Inflow = 7.33 cfs @ 12.08 hrs, Volume= 26,155 cf Outflow = 0.35 cfs @ 14.33 hrs, Volume= 26,155 cf, Atten= 95%, Lag= 134.7 min Discarded = 0.21 cfs @ 14.33 hrs, Volume= 25,293 cf Primary = 0.14 cfs @ 14.33 hrs, Volume= 861 cf					
Routed to Pond	1 OCS-311 : OCS-311				

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 244.12' @ 14.33 hrs Surf.Area= 7,709 sf Storage= 14,602 cf Flood Elev= 244.80' Surf.Area= 7,709 sf Storage= 16,746 cf

Plug-Flow detention time= 604.8 min calculated for 26,151 cf (100% of inflow) Center-of-Mass det. time= 604.8 min (1,350.0 - 745.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	241.30'	6,823 cf	58.50'W x 131.78'L x 3.50'H Field A
			26,981 cf Overall - 9,923 cf Embedded = 17,058 cf x 40.0% Voids
#2A	241.80'	9,923 cf	ADS_StormTech SC-740 +Cap x 216 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			216 Chambers in 12 Rows
		16,746 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	242.80'	12.0" Round Culvert
			L= 100.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 242.80' / 242.30' S= 0.0050 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf
#2	Device 1	244.05'	2.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
			0.5' Crest Height
#3	Discarded	241.30'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.21 cfs @ 14.33 hrs HW=244.12' (Free Discharge) **Galaxies and Second Secon**

Primary OutFlow Max=0.14 cfs @ 14.33 hrs HW=244.12' (Free Discharge) -**1=Culvert** (Passes 0.14 cfs of 2.70 cfs potential flow)

1-2=Sharp-Crested Rectangular Weir (Weir Controls 0.14 cfs @ 0.85 fps)

Pond INF-C: Bus Parking Gallery - Chamber Wizard Field A

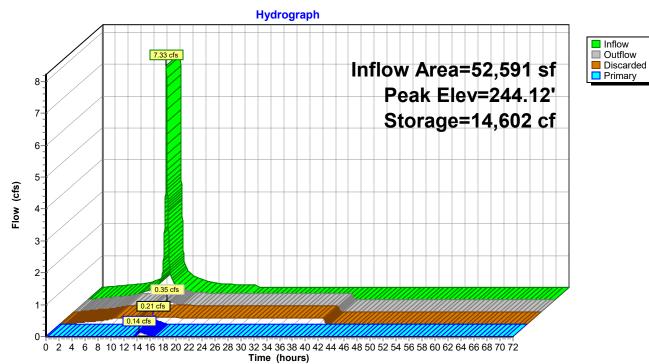
Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech® SC-740 with cap length) Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

18 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 129.78' Row Length +12.0" End Stone x 2 = 131.78' Base Length 12 Rows x 51.0" Wide + 6.0" Spacing x 11 + 12.0" Side Stone x 2 = 58.50' Base Width 6.0" Stone Base + 30.0" Chamber Height + 6.0" Stone Cover = 3.50' Field Height

216 Chambers x 45.9 cf = 9,923.0 cf Chamber Storage

26,981.3 cf Field - 9,923.0 cf Chambers = 17,058.2 cf Stone x 40.0% Voids = 6,823.3 cf Stone Storage


Chamber Storage + Stone Storage = 16,746.3 cf = 0.384 af Overall Storage Efficiency = 62.1% Overall System Size = 131.78' x 58.50' x 3.50'

216 Chambers 999.3 cy Field 631.8 cy Stone

	Q										0
	H			Н	H	Н	H				H
	Ц										
	H										
	H	_									
	H	-		Н	Н	Н	Н		Н		Н
	Ц										
	H										
	H	_									
	H	-		Н	Н	Н	Н	Н	Н	Н	H
	Ц										
	H										
	H										
U				U	U	U	U	U	U	U	U

HydroCAD Design Prop

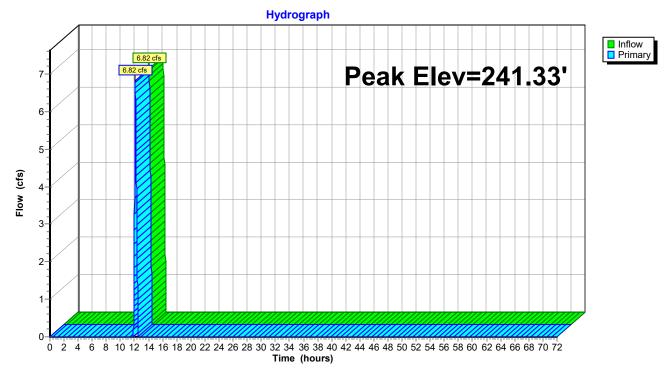
Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC

Pond INF-C: Bus Parking Gallery

Summary for Pond OCS-126: OCS-126

[57] Hint: Peaked at 241.33' (Flood elevation advised)[81] Warning: Exceeded Pond DMH-125 by 5.52' @ 0.00 hrs

Inflow	=	6.82 cfs @	12.10 hrs,	Volume=		
Outflow	=	6.82 cfs @	12.10 hrs,	Volume=		
Primary	=	6.82 cfs @	12.10 hrs,	Volume=		
Routed to Link 1L : POI 1						

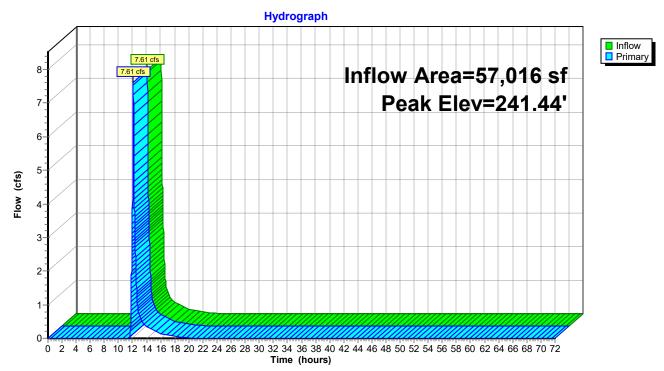

7,973 cf 7,973 cf, Atten= 0%, Lag= 0.0 min 7.973 cf

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 241.33' @ 12.10 hrs

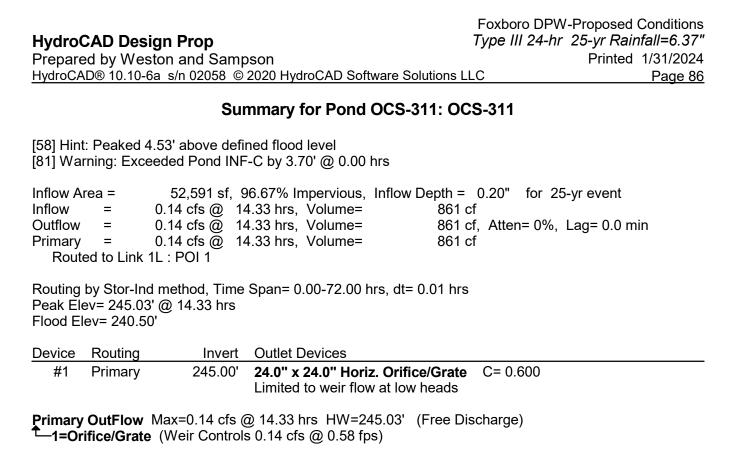
Device	Routing	Invert	Outlet Devices	
#1	Primary	240.92'	24.0" x 24.0" Horiz. Overflow Grate Limited to weir flow at low heads	C= 0.600

Primary OutFlow Max=6.81 cfs @ 12.10 hrs HW=241.33' (Free Discharge) ←1=Overflow Grate (Weir Controls 6.81 cfs @ 2.09 fps)

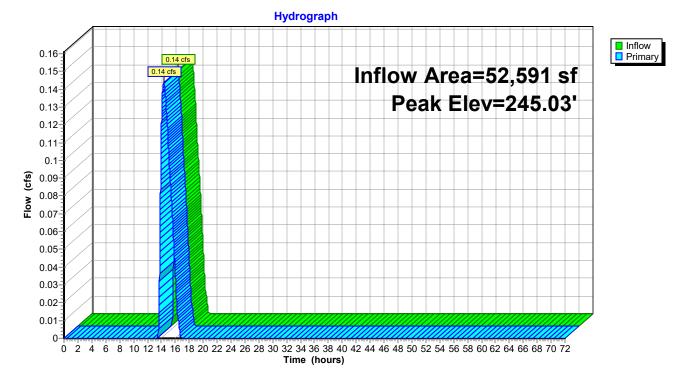
Pond OCS-126: OCS-126



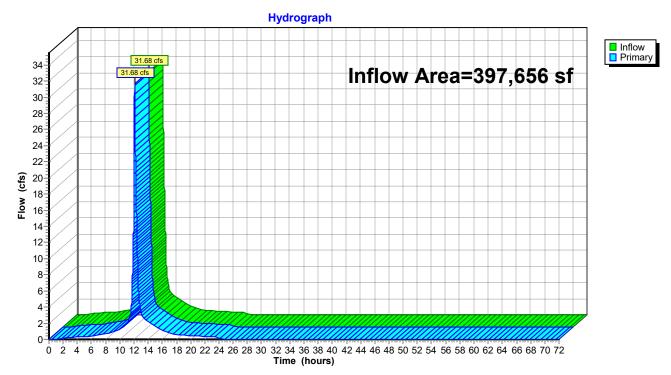
HydroCAD Design Prop	Foxboro DPW-Proposed Conditions Type III 24-hr 25-yr Rainfall=6.37"
Prepared by Weston and Sampson	Printed 1/31/2024
HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software	Solutions LLC Page 85
Summary for Pond OCS	S-216: OCS-216
[58] Hint: Peaked 0.94' above defined flood level [81] Warning: Exceeded Pond INF-B by 4.35' @ 0.00 hrs	
Inflow Area = 57,016 sf,100.00% Impervious, Inflo	
Inflow = 7.61 cfs @ 12.11 hrs, Volume=	16,424 cf
Outflow = 7.61 cfs @ 12.11 hrs, Volume=	16,424 cf, Atten= 0%, Lag= 0.0 min
Primary = 7.61 cfs @ 12.11 hrs, Volume=	16,424 cf
Routed to Link 1L : POI 1	
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, c	lt= 0.01 hrs


Peak Elev= 241.44' @ 12.11 hrs Flood Elev= 240.50'

Device	Routing	Invert	Outlet Devices	
#1	Primary	241.00'	24.0" x 24.0" Horiz. Orifice/Grate Limited to weir flow at low heads	C= 0.600


Primary OutFlow Max=7.60 cfs @ 12.11 hrs HW=241.44' (Free Discharge) **1=Orifice/Grate** (Weir Controls 7.60 cfs @ 2.17 fps)

Pond OCS-216: OCS-216


Pond OCS-311: OCS-311

Summary for Link 1L: POI 1

Inflow Area	a =	397,656 sf, 76.22% Impervious, Inflow Depth = 3.69" for 25-yr event	
Inflow	=	31.68 cfs @ 12.10 hrs, Volume= 122,221 cf	
Primary	=	31.68 cfs @ 12.10 hrs, Volume= 122,221 cf, Atten= 0%, Lag= 0.0 min	I

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Link 1L: POI 1

HydroCAD Design Prop Prepared by Weston and Sampson <u>HydroCAD® 10.10-6a</u> s/n 02058 © 2020 Hyd	Foxboro DPW-Proposed Conditions <i>Type III 24-hr 100-yr Rainfall=8.12"</i> Printed 1/31/2024 IroCAD Software Solutions LLC Page 88
Runoff by SCS T	0-72.00 hrs, dt=0.01 hrs, 7201 points R-20 method, UH=SCS, Weighted-Q d method - Pond routing by Stor-Ind method
Subcatchment A1: Bus Parking Area	Runoff Area=52,591 sf 96.67% Impervious Runoff Depth=7.69" Tc=6.0 min CN=WQ Runoff=9.39 cfs 33,693 cf
Subcatchment B1: Frontage Areas	Runoff Area=40,229 sf 89.49% Impervious Runoff Depth=7.18" Tc=6.0 min CN=WQ Runoff=6.67 cfs 24,067 cf
Subcatchment B2: North Yard Area	Runoff Area=35,224 sf 91.15% Impervious Runoff Depth=7.29" Tc=6.0 min CN=WQ Runoff=5.94 cfs 21,397 cf
Subcatchment C1: Gar. Addition	Runoff Area=5,702 sf 100.00% Impervious Runoff Depth=7.88" Tc=6.0 min CN=98 Runoff=1.04 cfs 3,744 cf
Subcatchment D1: Garage Area	Runoff Area=57,016 sf 100.00% Impervious Runoff Depth=7.88" Tc=6.0 min CN=98 Runoff=10.44 cfs 37,441 cf
Subcatchment E1: Southeast Yard Area	Runoff Area=132,553 sf 35.53% Impervious Runoff Depth=4.03" Tc=6.0 min CN=WQ Runoff=12.33 cfs 44,484 cf
Subcatchment OFFSITE: Offsite Drainage	e Runoff Area=74,341 sf 100.00% Impervious Runoff Depth=7.88" Tc=16.0 min CN=98 Runoff=10.16 cfs 48,818 cf
Pond DMH-110: DMH-110	Peak Elev=238.52' Inflow=14.52 cfs 72,885 cf Outflow=14.52 cfs 72,885 cf
Pond DMH-118: DMH-118	Peak Elev=237.45' Inflow=14.52 cfs 73,527 cf Outflow=14.52 cfs 73,527 cf
Pond DMH-125: DMH-125 Primary=10.62 cfs 81,8	Peak Elev=249.80' Inflow=20.06 cfs 94,924 cf 301 cf Secondary=9.44 cfs 13,123 cf Outflow=20.06 cfs 94,924 cf
Pond EX DMH: DMH	Peak Elev=241.85' Inflow=10.16 cfs 48,818 cf Outflow=10.16 cfs 48,818 cf
	Peak Elev=241.07' Storage=1,326 cf Inflow=1.04 cfs 3,744 cf 4 cfs 3,102 cf Primary=0.34 cfs 642 cf Outflow=0.38 cfs 3,744 cf
Pond INF-B: Garage Gallery Discarded=0.11 cfs	Peak Elev=239.88' Storage=7,342 cf Inflow=10.44 cfs 37,441 cf 13,124 cf Primary=9.85 cfs 24,317 cf Outflow=9.96 cfs 37,441 cf
Pond INF-C: Bus Parking Gallery Discarded=0.21 cfs	Peak Elev=244.44' Storage=15,635 cf Inflow=9.39 cfs 33,693 cf 26,820 cf Primary=2.11 cfs 6,873 cf Outflow=2.32 cfs 33,693 cf
Pond OCS-126: OCS-126	Peak Elev=241.43' Inflow=9.44 cfs 13,123 cf Outflow=9.44 cfs 13,123 cf
Pond OCS-216: OCS-216	Peak Elev=241.52' Inflow=9.85 cfs 24,317 cf Outflow=9.85 cfs 24,317 cf

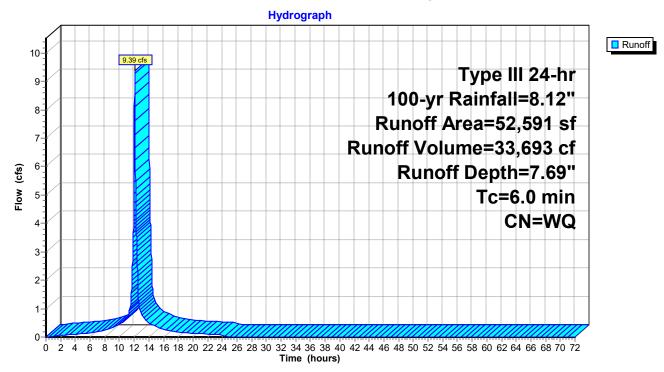
Peak Elev=245.19' Inflow=2.11 cfs 6,873 cf Outflow=2.11 cfs 6,873 cf

Link 1L: POI 1

Inflow=42.03 cfs 170,598 cf Primary=42.03 cfs 170,598 cf

Total Runoff Area = 397,656 sf Runoff Volume = 213,645 cf Average Runoff Depth = 6.45" 23.78% Pervious = 94,551 sf 76.22% Impervious = 303,105 sf

Pond OCS-311: OCS-311

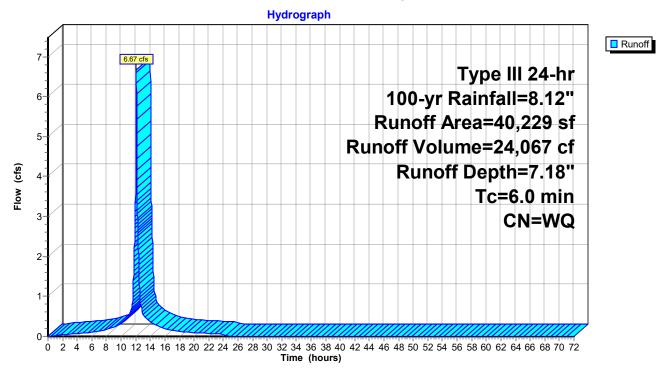

Summary for Subcatchment A1: Bus Parking Area

Runoff = 9.39 cfs @ 12.08 hrs, Volume= Routed to Pond INF-C : Bus Parking Gallery 33,693 cf, Depth= 7.69"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-yr Rainfall=8.12"

	Area (sf)	CN	Description				
*	50,842	98	Paved parking				
	673	61	>75% Grass cover, Good, HSG B				
	1,076	39	>75% Grass cover, Good, HSG A				
	52,591 Weighted Average						
	1,749		3.33% Perv	vious Area			
	50,842		96.67% Im	pervious Ar	a		
T (mir	c Length) (feet)	Slope (ft/ft		Capacity (cfs)	Description		
6.	0				Direct Entry,		

Subcatchment A1: Bus Parking Area

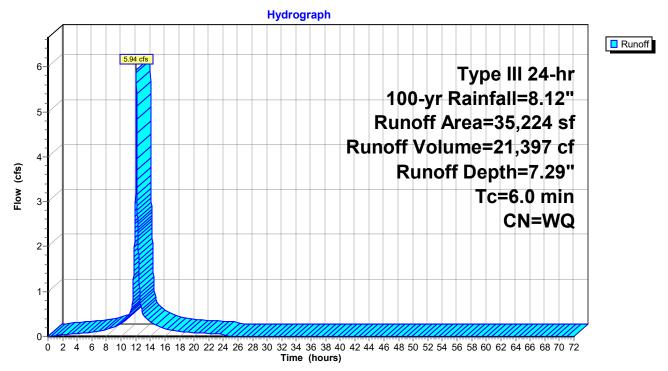

Summary for Subcatchment B1: Frontage Areas

Runoff = 6.67 cfs @ 12.08 hrs, Volume= Routed to Pond DMH-110 : DMH-110 24,067 cf, Depth= 7.18"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-yr Rainfall=8.12"

	A	rea (sf)	CN	Description				
*		36,002	98	Paved areas & roofs				
		4,227	39	>75% Grass cover, Good, HSG A				
		40,229 Weighted Average						
		4,227		3				
		36,002		89.49% Imp	pervious Ar	rea		
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description		
	6.0					Direct Entry,		

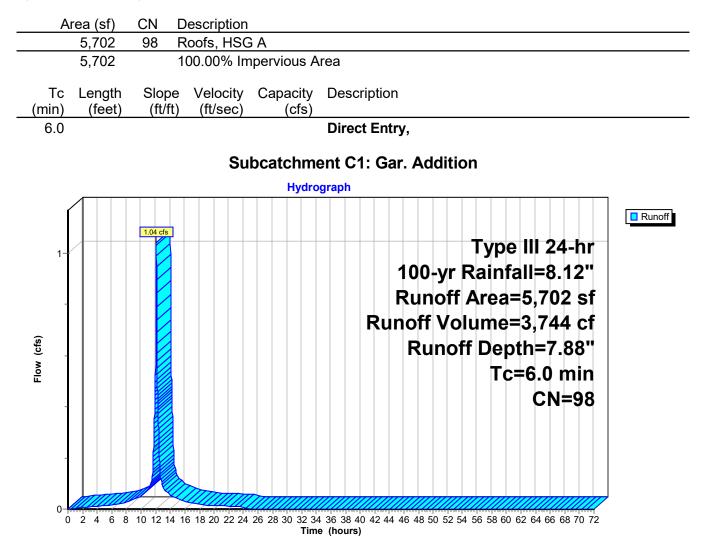
Subcatchment B1: Frontage Areas


Summary for Subcatchment B2: North Yard Area

Runoff = 5.94 cfs @ 12.08 hrs, Volume= Routed to Pond DMH-125 : DMH-125 21,397 cf, Depth= 7.29"

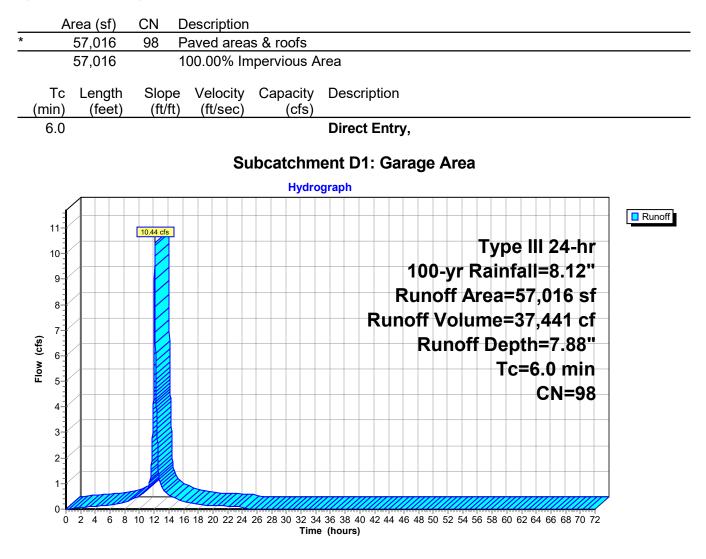
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-yr Rainfall=8.12"

_	A	rea (sf)	CN	Description		
*		32,105	98	Paved area	s & roofs	
_		3,119	39	>75% Gras	s cover, Go	bod, HSG A
		35,224		Weighted A	verage	
		3,119		8.85% Perv	vious Ārea	
		32,105		91.15% Imp	pervious Ar	ea
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	6.0					Direct Entry,


Subcatchment B2: North Yard Area

Summary for Subcatchment C1: Gar. Addition

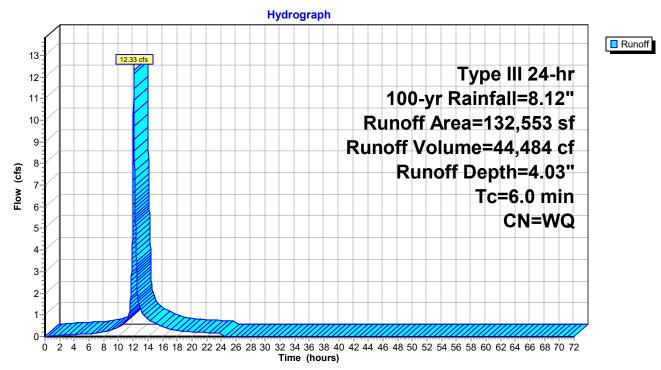
Runoff = 1.04 cfs @ 12.08 hrs, Volume= Routed to Pond INF-A : Addition Roof Gallery 3,744 cf, Depth= 7.88"


Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-yr Rainfall=8.12"

Summary for Subcatchment D1: Garage Area

Runoff = 10.44 cfs @ 12.08 hrs, Volume= Routed to Pond INF-B : Garage Gallery 37,441 cf, Depth= 7.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-yr Rainfall=8.12"


Summary for Subcatchment E1: Southeast Yard Area

Runoff = 12.33 cfs @ 12.09 hrs, Volume= 44,484 cf, Depth= 4.03" Routed to Link 1L : POI 1

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-yr Rainfall=8.12"

Area (sf)	CN	Description
47,097	98	Paved parking, HSG A
26,832	39	>75% Grass cover, Good, HSG A
17,412	30	Woods, Good, HSG A
34,660	55	Woods, Good, HSG B
6,552	61	>75% Grass cover, Good, HSG B
132,553		Weighted Average
85,456		64.47% Pervious Area
47,097		35.53% Impervious Area
Tc Length (min) (feet)	Sloj (ft/	
6.0		Direct Entry,

Subcatchment E1: Southeast Yard Area

Summary for Subcatchment OFFSITE: Offsite Drainage


Total subcatchment represents approximately 2,039 LF of ROW (81,560 SF) minus areas that directly contribute to the onsite drainage network.

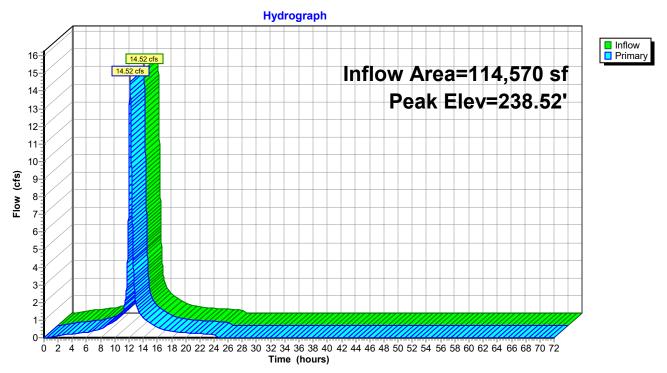
Runoff	=	10.16 cfs @	12.21 hrs,	Volume=	
Route	d to P	ond EX DMH : D	MH		

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 100-yr Rainfall=8.12"

	A	rea (sf)	CN E	Description		
*		74,341	98 E	Elm St right	-of-way	
		74,341	1	00.00% Im	npervious A	rea
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	16.0					Direct Entry,

Subcatchment OFFSITE: Offsite Drainage

48,818 cf, Depth= 7.88"


Foxboro DPW-Proposed Conditions Type III 24-hr 100-yr Rainfall=8.12" HydroCAD Design Prop Printed 1/31/2024 Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC Page 97

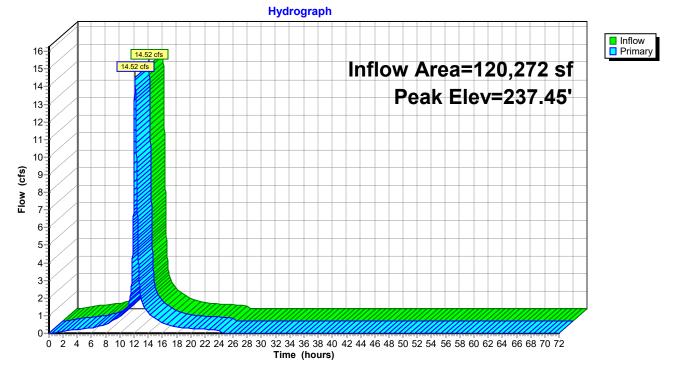
Summary for Pond DMH-110: DMH-110

114,570 sf, 96.31% Impervious, Inflow Depth = 7.63" for 100-yr event Inflow Area = 14.52 cfs @ 12.13 hrs, Volume= Inflow = 72.885 cf 72,885 cf, Atten= 0%, Lag= 0.0 min Outflow = 14.52 cfs @ 12.13 hrs, Volume= 14.52 cfs @ 12.13 hrs, Volume= Primary = 72,885 cf Routed to Pond DMH-118 : DMH-118 Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 238.52' @ 12.13 hrs Flood Elev= 241.60' Device Routing Invert Outlet Devices #1 Primary 236.04' 24.0" Round Culvert L= 118.0' CPP, projecting, no headwall, Ke= 0.900 Inlet / Outlet Invert= 236.04' / 235.45' S= 0.0050 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 3.14 sf #2 **24.0" x 24.0" Horiz. Orifice/Grate** C= 0.600 Primary 244.43' Limited to weir flow at low heads

Primary OutFlow Max=14.51 cfs @ 12.13 hrs HW=238.52' (Free Discharge) -1=Culvert (Inlet Controls 14.51 cfs @ 4.62 fps) -2=Orifice/Grate (Controls 0.00 cfs)

Pond DMH-110: DMH-110

Summary for Pond DMH-118: DMH-118


[79] Warning: Submerged Pond DMH-110 Primary device # 1 INLET by 1.41'

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 237.45' @ 12.13 hrs Flood Elev= 241.41'

Device	Routing	Invert	Outlet Devices
#1	Primary	234.97'	24.0" Round culvert
			L= 37.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 234.97' / 234.78' S= 0.0051 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 3.14 sf
#2	Primary	243.98'	24.0" x 24.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads

Primary OutFlow Max=14.51 cfs @ 12.13 hrs HW=237.45' (Free Discharge) -1=culvert (Inlet Controls 14.51 cfs @ 4.62 fps) -2=Orifice/Grate (Controls 0.00 cfs)

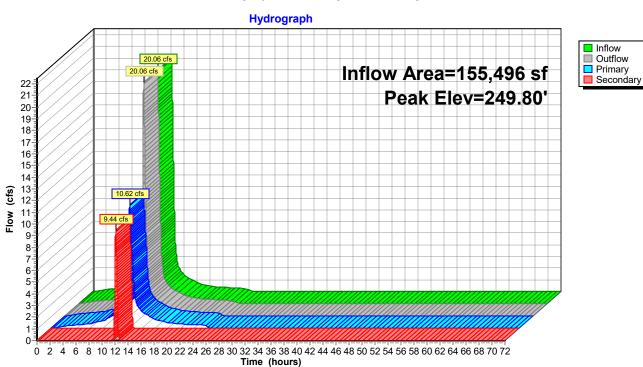
Pond DMH-118: DMH-118

Printed 1/31/2024

Page 99

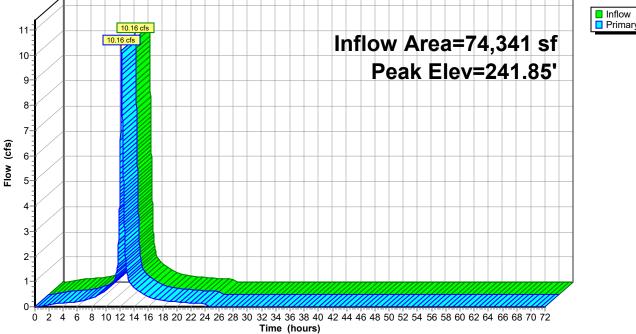
[58] Hint: Peaked 9.30' above defined flood level [81] Warning: Exceeded Pond DMH-118 by 12.39' @ 12.10 hrs 155,496 sf, 95.28% Impervious, Inflow Depth = 7.33" for 100-yr event Inflow Area = 20.06 cfs @ 12.10 hrs, Volume= Inflow = 94,924 cf 20.06 cfs @ 12.10 hrs, Volume= 94,924 cf, Atten= 0%, Lag= 0.0 min Outflow = 10.62 cfs @ 12.10 hrs, Volume= Primary 81,801 cf = Routed to Link 1L : POI 1 Secondary = 9.44 cfs @ 12.10 hrs, Volume= 13,123 cf Routed to Pond OCS-126 : OCS-126 Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 249.80' @ 12.10 hrs Flood Elev= 240.50' Device Routing Invert Outlet Devices

001100	rtouting	1110010	Callet Defield
#1	Primary	235.40'	12.0" Round Culvert
			L= 130.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 235.40' / 233.54' S= 0.0143 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf
#2	Secondary	239.30'	12.0" Round Culvert
			L= 70.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 239.30' / 237.90' S= 0.0200 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf


Primary OutFlow Max=10.61 cfs @ 12.10 hrs HW=249.77' (Free Discharge) **1**=**Culvert** (Barrel Controls 10.61 cfs @ 13.51 fps)

Secondary OutFlow Max=9.43 cfs @ 12.10 hrs HW=249.77' (Free Discharge) 2=Culvert (Inlet Controls 9.43 cfs @ 12.01 fps)

HydroCAD Design Prop


Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC

Foxboro DPW-Proposed Conditions *Type III 24-hr 100-yr Rainfall=8.12"* Printed 1/31/2024 LLC Page 100

Pond DMH-125: DMH-125

Foxboro DPW-Proposed Conditions Type III 24-hr 100-yr Rainfall=8.12" HydroCAD Design Prop Printed 1/31/2024 Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC Page 101 Summary for Pond EX DMH: DMH Inflow Area = 74,341 sf,100.00% Impervious, Inflow Depth = 7.88" for 100-yr event Inflow 10.16 cfs @ 12.21 hrs, Volume= = 48.818 cf 48,818 cf, Atten= 0%, Lag= 0.0 min Outflow = 10.16 cfs @ 12.21 hrs, Volume= 10.16 cfs @ 12.21 hrs, Volume= Primary = 48,818 cf Routed to Pond DMH-110 : DMH-110 Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 241.85' @ 12.21 hrs Flood Elev= 244.83' Device Routing Invert Outlet Devices #1 Primary 239.23' 15.0" Round RCP Round 15" L= 20.0' RCP, groove end projecting, Ke= 0.200 Inlet / Outlet Invert= 239.23' / 238.90' S= 0.0165 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 1.23 sf #2 **24.0" x 24.0" Horiz. Orifice/Grate** C= 0.600 Primary 244.58' Limited to weir flow at low heads Primary OutFlow Max=10.16 cfs @ 12.21 hrs HW=241.85' (Free Discharge) -1=RCP_Round 15" (Barrel Controls 10.16 cfs @ 8.28 fps) -2=Orifice/Grate (Controls 0.00 cfs) Pond EX DMH: DMH Hydrograph Inflow Primary 10.16 cfs 11 10.16 cfs Inflow Area=74,341 sf 10-

Summary for Pond INF-A: Addition Roof Gallery

Printed 1/31/2024

Page 102

Inflow Area =	5,702 sf,100.00% Impervious,	Inflow Depth = 7.88" for 100-yr event
Inflow =	1.04 cfs @ 12.08 hrs, Volume=	3,744 cf
Outflow =	0.38 cfs @ 12.33 hrs, Volume=	3,744 cf, Atten= 63%, Lag= 14.6 min
Discarded =	0.04 cfs @ 12.33 hrs, Volume=	3,102 cf
Primary =	0.34 cfs @ 12.33 hrs, Volume=	642 cf
Routed to Pon	d DMH-118 : DMH-118	

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 241.07' @ 12.33 hrs Surf.Area= 1,600 sf Storage= 1,326 cf Flood Elev= 242.03' Surf.Area= 1,600 sf Storage= 2,022 cf

Plug-Flow detention time= 200.7 min calculated for 3,744 cf (100% of inflow) Center-of-Mass det. time= 200.6 min (941.7 - 741.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	239.70'	1,139 cf	21.50'W x 74.40'L x 2.33'H Field A
			3,732 cf Overall - 885 cf Embedded = 2,848 cf x 40.0% Voids
#2A	240.20'	885 cf	ADS_StormTech SC-310 +Cap x 60 Inside #1
			Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf
			Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap
			60 Chambers in 6 Rows
		2,024 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	239.60'	12.0" Round Culvert
			L= 50.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 239.60' / 239.00' S= 0.0120 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	240.95'	2.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
			0.5' Crest Height
#3	Discarded	239.70'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.04 cfs @ 12.33 hrs HW=241.07' (Free Discharge) **-3=Exfiltration** (Exfiltration Controls 0.04 cfs)

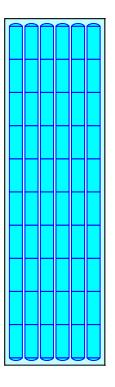
Primary OutFlow Max=0.34 cfs @ 12.33 hrs HW=241.07' (Free Discharge) -**1=Culvert** (Passes 0.34 cfs of 2.94 cfs potential flow)

1-2=Sharp-Crested Rectangular Weir (Weir Controls 0.34 cfs @ 1.15 fps)

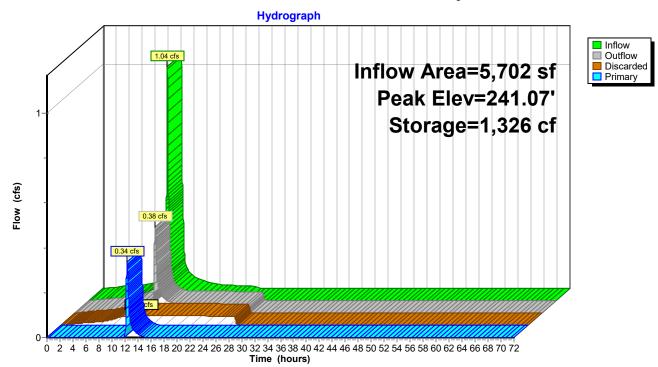
Pond INF-A: Addition Roof Gallery - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-310 +Cap (ADS StormTech® SC-310 with cap length) Effective Size= 28.9"W x 16.0"H => 2.07 sf x 7.12'L = 14.7 cf Overall Size= 34.0"W x 16.0"H x 7.56'L with 0.44' Overlap

34.0" Wide + 6.0" Spacing = 40.0" C-C Row Spacing


10 Chambers/Row x 7.12' Long +0.60' Cap Length x 2 = 72.40' Row Length +12.0" End Stone x 2 = 74.40' Base Length 6 Rows x 34.0" Wide + 6.0" Spacing x 5 + 12.0" Side Stone x 2 = 21.50' Base Width 6.0" Stone Base + 16.0" Chamber Height + 6.0" Stone Cover = 2.33' Field Height

60 Chambers x 14.7 cf = 884.5 cf Chamber Storage


3,732.4 cf Field - 884.5 cf Chambers = 2,847.9 cf Stone x 40.0% Voids = 1,139.2 cf Stone Storage

Chamber Storage + Stone Storage = 2,023.7 cf = 0.046 af Overall Storage Efficiency = 54.2%Overall System Size = $74.40' \times 21.50' \times 2.33'$

60 Chambers 138.2 cy Field 105.5 cy Stone

 $\triangle \triangle \triangle \triangle \triangle \triangle \triangle$

Pond INF-A: Addition Roof Gallery

Summary for Pond INF-B: Garage Gallery

Printed 1/31/2024

Page 105

Inflow Area = 57,016 sf,100.00% Impervious, Inflow Depth = 7.88" for 100-yr event 10.44 cfs @ 12.08 hrs, Volume= Inflow = 37.441 cf 37,441 cf, Atten= 5%, Lag= 1.5 min Outflow = 9.96 cfs @ 12.11 hrs, Volume= Discarded = 0.11 cfs @ 12.11 hrs, Volume= 13,124 cf Primary = 9.85 cfs @ 12.11 hrs, Volume= 24,317 cf Routed to Pond OCS-216 : OCS-216

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 239.88' @ 12.11 hrs Surf.Area= 3,590 sf Storage= 7,342 cf Flood Elev= 240.40' Surf.Area= 3,590 sf Storage= 7,727 cf

Plug-Flow detention time= 206.8 min calculated for 37,436 cf (100% of inflow) Center-of-Mass det. time= 206.9 min (947.9 - 741.0)

Volume	Invert	Avail.Storage	Storage Description
#1A	236.65'	3,225 cf	34.75'W x 103.30'L x 3.50'H Field A
			12,563 cf Overall - 4,502 cf Embedded = 8,061 cf x 40.0% Voids
#2A	237.15'	4,502 cf	ADS_StormTech SC-740 +Cap x 98 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			98 Chambers in 7 Rows
		7,727 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	237.65'	24.0" Round Culvert
			L= 50.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 237.65' / 237.40' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf
#2	Device 1	238.85'	2.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
			0.5' Crest Height
#3	Discarded	236.65'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.11 cfs @ 12.11 hrs HW=239.88' (Free Discharge) **-3=Exfiltration** (Exfiltration Controls 0.11 cfs)

Primary OutFlow Max=9.84 cfs @ 12.11 hrs HW=239.88' (Free Discharge) -1=Culvert (Passes 9.84 cfs of 13.13 cfs potential flow)

1-2=Sharp-Crested Rectangular Weir (Weir Controls 9.84 cfs @ 4.16 fps)

Pond INF-B: Garage Gallery - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech® SC-740 with cap length) Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

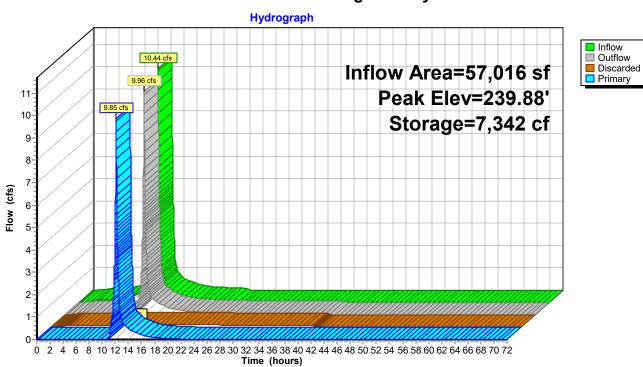
14 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 101.30' Row Length +12.0" End Stone x 2 = 103.30' Base Length 7 Rows x 51.0" Wide + 6.0" Spacing x 6 + 12.0" Side Stone x 2 = 34.75' Base Width 6.0" Stone Base + 30.0" Chamber Height + 6.0" Stone Cover = 3.50' Field Height

98 Chambers x 45.9 cf = 4,502.1 cf Chamber Storage

12,563.5 cf Field - 4,502.1 cf Chambers = 8,061.3 cf Stone x 40.0% Voids = 3,224.5 cf Stone Storage

Chamber Storage + Stone Storage = 7,726.7 cf = 0.177 af Overall Storage Efficiency = 61.5%Overall System Size = $103.30' \times 34.75' \times 3.50'$

98 Chambers 465.3 cy Field 298.6 cy Stone


	\frown	\frown	\frown	\frown	\frown
_					

 $\square \square \square$

HydroCAD Design Prop

Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC

Foxboro DPW-Proposed Conditions *Type III 24-hr 100-yr Rainfall=8.12"* Printed 1/31/2024 LLC Page 107

Pond INF-B: Garage Gallery

Summary for Pond INF-C: Bus Parking Gallery

Inflow Area = 52,591 sf, 96.67% Impervious, Inflow Depth = 7.69" for 100-yr event 9.39 cfs @ 12.08 hrs, Volume= Inflow = 33.693 cf Outflow = 2.32 cfs @ 12.46 hrs, Volume= 33,693 cf, Atten= 75%, Lag= 22.3 min Discarded = 0.21 cfs @ 12.46 hrs, Volume= 26,820 cf Primary = 2.11 cfs @ 12.46 hrs, Volume= 6,873 cf Routed to Pond OCS-311 : OCS-311

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs / 3 Peak Elev= 244.44' @ 12.46 hrs Surf.Area= 7,709 sf Storage= 15,635 cf Flood Elev= 244.80' Surf.Area= 7,709 sf Storage= 16,746 cf

Plug-Flow detention time= 510.3 min calculated for 33,693 cf (100% of inflow) Center-of-Mass det. time= 510.2 min (1,252.4 - 742.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	241.30'	6,823 cf	58.50'W x 131.78'L x 3.50'H Field A
			26,981 cf Overall - 9,923 cf Embedded = 17,058 cf x 40.0% Voids
#2A	241.80'	9,923 cf	ADS_StormTech SC-740 +Cap x 216 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			216 Chambers in 12 Rows
		16,746 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	242.80'	12.0" Round Culvert
			L= 100.0' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 242.80' / 242.30' S= 0.0050 '/' Cc= 0.900
			n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf
#2	Device 1	244.05'	2.5' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
			0.5' Crest Height
#3	Discarded	241.30'	1.020 in/hr Exfiltration over Wetted area

Discarded OutFlow Max=0.21 cfs @ 12.46 hrs HW=244.44' (Free Discharge) **-3=Exfiltration** (Exfiltration Controls 0.21 cfs)

Primary OutFlow Max=2.11 cfs @ 12.46 hrs HW=244.44' (Free Discharge) -**1=Culvert** (Passes 2.11 cfs of 3.15 cfs potential flow) **1**-2=Sharp-Crested Rectangular Weir (Weir Controls 2.11 cfs @ 2.23 fps) Page 108

Printed 1/31/2024

Pond INF-C: Bus Parking Gallery - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech® SC-740 with cap length) Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

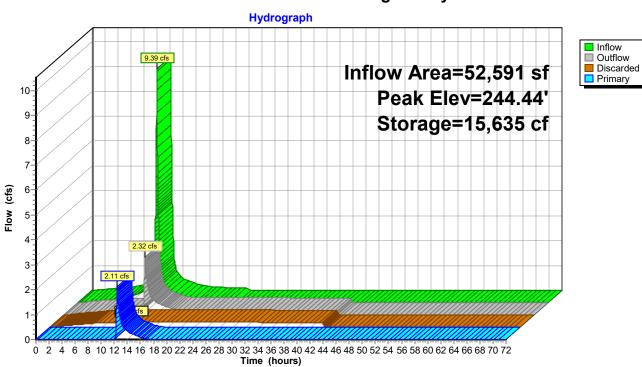
51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

18 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 129.78' Row Length +12.0" End Stone x 2 = 131.78' Base Length 12 Rows x 51.0" Wide + 6.0" Spacing x 11 + 12.0" Side Stone x 2 = 58.50' Base Width 6.0" Stone Base + 30.0" Chamber Height + 6.0" Stone Cover = 3.50' Field Height

216 Chambers x 45.9 cf = 9,923.0 cf Chamber Storage

26,981.3 cf Field - 9,923.0 cf Chambers = 17,058.2 cf Stone x 40.0% Voids = 6,823.3 cf Stone Storage

Chamber Storage + Stone Storage = 16,746.3 cf = 0.384 af Overall Storage Efficiency = 62.1% Overall System Size = 131.78' x 58.50' x 3.50'


216 Chambers 999.3 cy Field 631.8 cy Stone

	Q	Ó	0	D	0	0	D	0)		0
	H			Н	H	Н	H				H
	Ц										
	H										
	H	_									
	H	-		Н	Н	Н	Н		Н		Н
	Ц										
	H										
	H	_									
	H	-		Н	Н	Н	Н	Н	Н	Н	H
	Ц										
	H										
	H										
U				U	U	U	U	U	U	U	U

HydroCAD Design Prop

Prepared by Weston and Sampson HydroCAD® 10.10-6a s/n 02058 © 2020 HydroCAD Software Solutions LLC

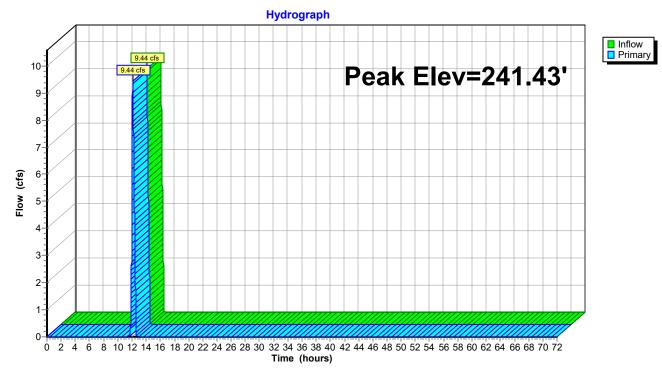
Foxboro DPW-Proposed Conditions *Type III 24-hr 100-yr Rainfall=8.12"* Printed 1/31/2024 LLC Page 110

Pond INF-C: Bus Parking Gallery

Summary for Pond OCS-126: OCS-126

[57] Hint: Peaked at 241.43' (Flood elevation advised)[81] Warning: Exceeded Pond DMH-125 by 5.52' @ 0.00 hrs

Inflow	=	9.44 cfs @	12.10 hrs,	Volume=
Outflow	=	9.44 cfs @	12.10 hrs,	Volume=
Primary	=	9.44 cfs @	12.10 hrs,	Volume=
Routed	l to L	ink 1L : POI 1		


13,123 cf 13,123 cf, Atten= 0%, Lag= 0.0 min 13,123 cf

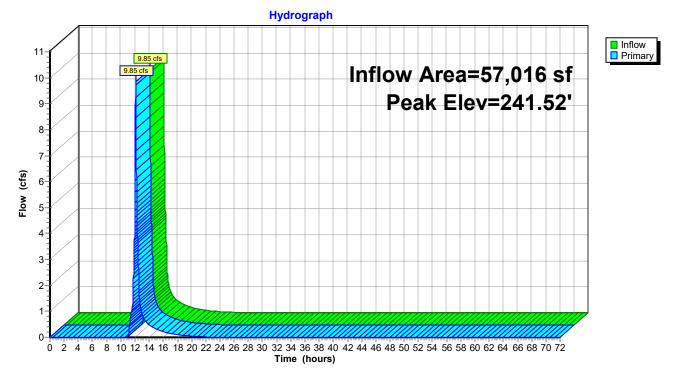
Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 241.43' @ 12.10 hrs

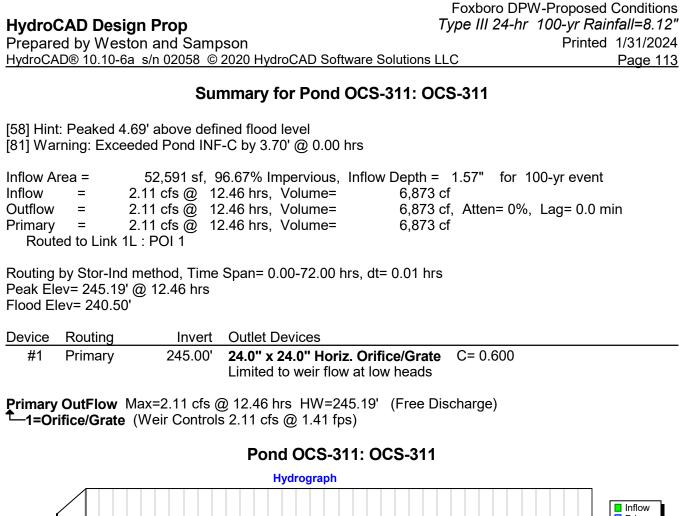
Device	Routing	Invert	Outlet Devices	
#1	Primary	240.92'	24.0" x 24.0" Horiz. Overflow Grate Limited to weir flow at low heads	C= 0.600

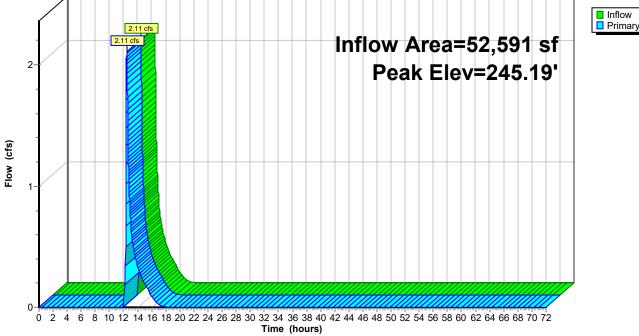
Primary OutFlow Max=9.43 cfs @ 12.10 hrs HW=241.43' (Free Discharge) ←1=Overflow Grate (Weir Controls 9.43 cfs @ 2.33 fps)

Pond OCS-126: OCS-126

		Foxboro DPW-Proposed Conditions <i>Type III 24-hr 100-yr Rainfall=8.12"</i> Printed 1/31/2024		
	ston and Sampson 6a_s/n 02058 © 2020 HydroCAD Softw			
Summary for Pond OCS-216: OCS-216				
	1.02' above defined flood level eeded Pond INF-B by 4.35' @ 0.00 h	rs		
Inflow Area = Inflow = Outflow = Primary =	57,016 sf,100.00% Impervious, I 9.85 cfs @ 12.11 hrs, Volume= 9.85 cfs @ 12.11 hrs, Volume= 9.85 cfs @ 12.11 hrs, Volume=	nflow Depth = 5.12" for 100-yr event 24,317 cf 24,317 cf, Atten= 0%, Lag= 0.0 min 24,317 cf		

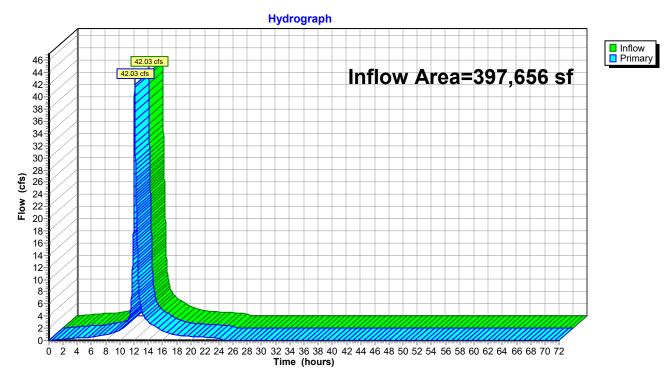

Routing by Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 241.52' @ 12.11 hrs Flood Elev= 240.50'


Routed to Link 1L : POI 1


Device	Routing	Invert	Outlet Devices	
#1	Primary	241.00'	24.0" x 24.0" Horiz. Orifice/Grate Limited to weir flow at low heads	C= 0.600

Primary OutFlow Max=9.84 cfs @ 12.11 hrs HW=241.52' (Free Discharge) **1=Orifice/Grate** (Weir Controls 9.84 cfs @ 2.36 fps)

Pond OCS-216: OCS-216



Summary for Link 1L: POI 1

Inflow Area	=	397,656 sf, 76.22% Impervious, Inflow Depth = 5.15" for	or 100-yr event
Inflow	=	42.03 cfs @ 12.10 hrs, Volume= 170,598 cf	
Primary	=	42.03 cfs @ 12.10 hrs, Volume= 170,598 cf, Atten=	0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Link 1L: POI 1

APPENDIX C

.....

FOXBOROUGH DPW FACILITY RECHARGE CALCULATION

REQUIRED RECHARGE

Area Summary		
	Area (SF)*	* Areas retrieved from HydroCAD
Existing Impervious	242,912	
Proposed Impervious	228,764	
Required Recharge Area (Proposed - Existing)	<u>0</u>	

Note: Site consists of HSG A soils.

Hydrologic Soil Group Summary			
Group	Target Depth Factor (in)	Area (SF)	
A	0.6	0	
В	0.35	0	
С	0.25	0	
D	0.1	0	

Required Recharge (Rv) Calculation:

Rv =	Target Depth	Factor $x \Delta$ Impervious	Area
Rv =	0.6	x (1/12) x	0
Rv =	0	CF	

PROPOSED RECHARGE SUMMARY

Detailed calculations on following pages

Location	Volume (CF)
Field A Chambers	1,205
Field B Chambers	5,437
Field C Chambers	14,355
Total	20,997

Rv =	0	CF
Provided recharge =	20,997	CF

Recharge Requirement is exceeded.

PROPOSED RECHARGE

Underground Infiltration Chambers - INF-A

ADS StormTech SC-310 (34.0"W x 16.0"H => 2.07 SF x 7.12'L)

Avail. SC-310 storage (from HydroCAD	884.50	CF	(60 chambers+end caps)
Available Stone Storage (from HydroCAD	1139.20	CF	
Overall System Area	1599.60	SF	
Bottom of Chamber Elevation	240.20	FT	
Weir elevation	240.95	FT	
Chamber storage height	0.75	FT	
Net Storage at Weir Elevation (from HydroCAD)	1,205.00	CF	
Stone and Chamber recharge volume	1,205	CF	

Underground Infiltration Chambers - INF-B

ADS StormTech MC-7400 (51.0"W x 30.0"H => 6.45 SF x 7.12'L)

······································	
Net Storage at Weir Elevation (from HydroCAD) 5,437.00 CF	
Chamber storage height 1.70 FT	
Weir elevation 238.85 FT	
Bottom of Chamber Elevation 237.15 FT	
Overall System Area 3589.68 SF	
Available Stone Storage (from HydroCAD 3224.50 CF	
Avail. MC-7400 storage (from HydroCAD 4,502.10 CF	(3

Underground Infiltration Chambers - INF-C

ADS StormTech MC-7400 (51.0"W x 30.0"H => 6.45 SF x 7.12'L)

Stone and Chamber recharge volume	14,355	CF	
Net Storage at Weir Elevation (from HydroCAD)	14,355.00	CF	
Chamber storage height	2.25	FT	
Weir elevation	244.05	FT	
Bottom of Chamber Elevation	241.80	FT	
Overall System Area	7709.13	SF	
Available Stone Storage (from HydroCAD	6823.30	CF	
Avail. MC-4500 storage (from HydroCAD	9,923.00	CF	(75 chambers+ end caps)

FOXBOROUGH DPW FACILITY DRAWDOWN CALCULATION

-- MAXIMUM DRAWDOWN TIME IS 72 HOURS --

Time to drawdown calculation

Time = <u>Rv</u>

k * bottom area

where,

Rv = storage volume

k = saturated hydraulic conductivity rate

bottom area = average surface storage area of recharge structure

PROPOSED STORAGE DRAWDOWN CALCULATIONS

Leaching Chambers - Field A						
Net storage volume		1,205	CF			
Bottom area		1,600	SF			
k		1.02	in/hr			
	Time =	8.86	hours			
Proposed	Proposed drawdown time is acceptable.					

Leaching Chambers - Field B				
Net storage volume		5,437	CF	
Bottom area		3,590	SF	
k		1.02	in/hr	
	Time =	17.82	hours	
Proposed drawdown time is acceptable.				

Leaching Chambers - Field C					
Net storage volume		14,355	CF		
Bottom area		7,709	SF		
k		1.02	in/hr		
	Time =	21.91	hours		
Proposed of	Proposed drawdown time is acceptable.				

FOXBOROUGH DPW FACILITY WATER QUALITY VOLUME CALCULATION

As stated in the Stormwater Handbook, for a LUHPPL, the required water quality volume equals 1.0 inch of runoff times the total impervious area of the post-development site.

TOTAL STORAGE P	ROVIDE	ED
Field A Storage =	1,205	CF
Field B Storage =	5,437	CF
Field D Storage =	14,355	CF
Total Storage Provided =	20,997	CF

WQV CALCULATION	
Proposed Impervious Area = 228,764	4 SF
1" Water Quality Storage	
228,764 sf x 1" x 1'/12"= 19,064	CF

Proposed recharge exceeds the 1 inch water quality volume requirements.

Project :	Foxboro DPW
Location:	70 Elm Street
Prepared by:	Elena Compter

- **Purpose:** To calculate the water quality flow rate (WQF) over a given site area.
- **References:** MassDEP Wetlands Program/Unites States Department of Agriculture Natural Resources Conservation Service TR-55 Manual

<u>Given</u>	Structure	Impervious	А	Тс	Тс	WQV
	Name	(Acres)	(miles²)	(min)	(hr)	(in)
	SWTU-109	0.826	0.001290625	6	0.1	1
	SWTU-113	0.737	0.001151563	6	0.1	1
	SWTU-115	0.034	0.000053125	6	0.1	1
	<mark>SWTU-308</mark>	0.810	0.001265625	6	0.1	1
	SWTU-310	0.373	0.000582813	6	0.1	1
	SWTU-209	0.549	0.000857813	6	0.1	1
	SWTU-212	0.162	0.000253125	6	0.1	1
	SWTU-400	0.641	0.001001563	6	0.1	1

Procedure: Determine unit peak discharge(qu) using Figure 1 or 2 contained the reference material. Using the Tc, read the unit peak disharge (qu) from Table in Figure 2. qu is expressed in the following units: cfs/mi²/watershed inches (csm/in).

Structure	Impervious
Name	(Acres)
SWTU-109	774
SWTU-113	774
SWTU-115	774
SWTU-308	774
SWTU-310	774
SWTU-209	774
SWTU-212	774
SWTU-400	774

1. Compute Q Rate using the following equation:

Q= (qu) (A) (WQV)

where: q = flow rate associated with the first 1" of runoff
qu = the unit peak discharge, in csm/in
A = impervious surface drainage area (in square miles)
WQV = water quality volume in watershed inches (1.0" in this case)

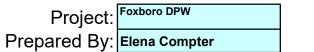
Structure Q treatment

Name	(cfs)		
SWTU-109	0.999		
SWTU-113	0.891		
SWTU-115	0.041		
SWTU-308	0.980		
SWTU-310	0.451		
SWTU-209	0.664		
SWTU-212	0.196		
SWTU-400	0.775		

INSTRUCTIONS:

1. In BMP Column, click on Blue Cell to Activate Drop Down Menu

2. Select BMP from Drop Down Menu


3. After BMP is selected, TSS Removal and other Columns are automatically completed.

	Location: Pre-Treatment Train A1, D1				
	В	C TSS Removal	D Starting TSS	E Amount	F Remaining
	BMP ¹	Rate ¹	Load*	Removed (C*D)	Load (D-E)
Removal Calculation Worksheet	Street Sweeping	5.0%	100.0%	5%	95%
	Deep Sump and Hooded Catch Basin	25.0%	95.0%	24%	71%
val C orkshe	Hydrodynamic Separator	50.0%	71.3%	36%	36%
Remo Wo	Isolator Row	25.0%	35.6%	9%	27%
TSS		0.0%	26.7%	0%	27%
Ĥ		0.0%	26.7%	0%	27%
					Separate Form Needs to be

Total TSS Removal =

73%

Separate Form Needs to be Completed for Each Outlet or BMP Train

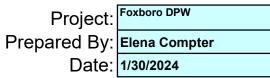
Pretreatment rate is above 44% prior to

Date: 1/30/2024

Infiltration BMP

INSTRUCTIONS:

1. In BMP Column, click on Blue Cell to Activate Drop Down Menu


2. Select BMP from Drop Down Menu

3. After BMP is selected, TSS Removal and other Columns are automatically completed.

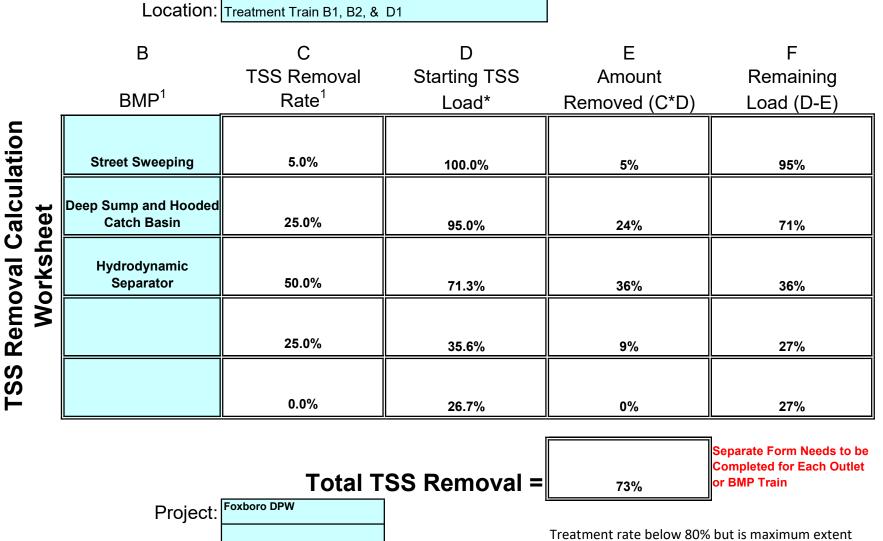
	Location:	Treatment Train A1, D1			
	В	C TSS Removal	D Starting TSS	E Amount	F Remaining
Removal Calculation Worksheet	BMP ¹	Rate ¹	Load*	Removed (C*D)	Load (D-E)
	Street Sweeping	5.0%	100.0%	5%	95%
	Deep Sump and Hooded Catch Basin	25.0%	95.0%	24%	71%
oval C	1000000 Catch Basin Hydrodynamic Separator	50.0%	71.3%	36%	36%
Remo	Isolator Row	25.0%	35.6%	9%	27%
TSS	Subsurface Infiltrationf Chambers	80.0%	26.7%	21%	5%
					Separate Form Needs to be Completed for Each Outlet

Total TSS Removal =

Completed for Each Outlet or BMP Train

Treatment rate is above 80%

95%


INSTRUCTIONS:

1. In BMP Column, click on Blue Cell to Activate Drop Down Menu

Prepared By: Elena Compter

2. Select BMP from Drop Down Menu

3. After BMP is selected, TSS Removal and other Columns are automatically completed.

practicable for re-development

Date: 1/30/2024

Stormwater Technology: Stormceptor

(Hydro Conduit, formerly CSR New England Pipe)

Revised February 2003

The **Stormceptor Fact Sheet** is one in a series of fact sheets for stormwater technologies and related performance evaluations, which are undertaken by the **Massachusetts STrategic Envirotechnology Partnership (STEP)**.

The STEP evaluation entitled, *Technology Assessment, Stormceptor CSR New England Pipe*, January 1998 is the information source for this fact sheet. When a more thorough understanding of a system is required, the full *Technology Assessment* should be reviewed. Copies are available for downloading from the STEP Web site (www.STEPSITE.org/) or by contacting the STEP Program (Phone: 617/626/1197, FAX: 617/626/1180, email: linda.benevides@state.ma.us). This fact sheet is subject to future updates as additional performance information becomes available.

Description/Definition

Stormceptor is a prefabricated, underground unit that separates oils, grease, and sediment from stormwater runoff when installed with an existing or new pipe conveyance system. The unit is divided into two chambers–a treatment and a flow bypass chamber. During typical storm events, runoff is directed by the inflow weir through a drop pipe into the lower treatment chamber where sediment, oil, and grease are separated from the flow by gravity. The bypass chamber is designed to convey excess stormwater, which overtops the inflow weir, through the system without treatment.

Equipment and Sizing

The on-line Stormceptor units are available in eight sizes ranging from six and twelve feet in diameter with capacities of 900 to 7200 gallons. Since issuing the STEP assessment in 1998, the manufacturer has expanded the Stormceptor product line to include a storm drain inlet (STC 450i) and three units (Models STC 11000, STC 13000, and STC16000). These systems are not included in the STEP evaluation. Users and decision-makers may require additional field test results and new data for these new systems in order to accept performance ratings, particularly if they are higher than those reported in the STEP technology assessment and this fact sheet.

Stormceptor units are available in either precast concrete or fiberglass for special applications. Concrete units are pre-engineered for HS-20 min. traffic loading at the surface. Fiberglass units can be used in areas where there is a potential for oil and chemical spills.

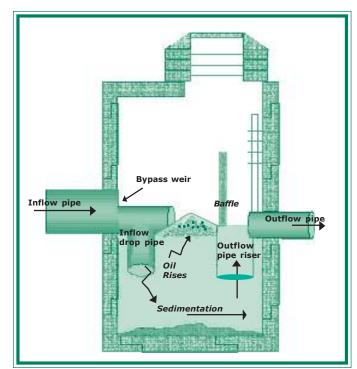


Figure 1. Stormceptor operation during average flow conditions.

Performance/Effectiveness

The system is designed to provide separation of sediment, oil, and grease from stormwater by routing runoff into a low-turbulence environment where solids settle and oils float out of solution. The system sizing is based on the drainage area, historical rainfall data, and the solids removal efficiency required. It is recommended that the system be used in combination with other stormwater controls to conform with the Massachusetts Stormwater Management Policy and standards.

An Imperial Model STC 2000 (equivalent to the Model STC 2400) in Edmonton, Canada treats flow from a 9.8 acre commercial parking lot. This system was monitored during four storm events in 1996 and shown to have an average total suspended solids (TSS) removal efficiency of 52 percent. In designing a system to achieve a comparable removal efficiency, the relationship between system size and impervious drainage area should be considered, as detailed in Table 1 and the Technology Assessment Report.

A Model STC 1200 in Westwood, Massachusetts treats flow from 0.65 acres consisting of a paved truck loading area at a manufacturing facility. The unit was monitored for six storm events in 1997, but only four events had measurable TSS influent concentrations. Of these four events, the average TSS removal efficiency was calculated to be 77 percent, which is less than the 80 percent removal targeted by the manufacturer.

Based on these field monitoring results, and when the unit sizing follows the guidance in Table 1, removal efficiencies between 52 percent and 77 percent may be achieved where installations have similar rainfall and land use characteristics as those reviewed for the STEP evaluation. It is recommended that additional field research and new data be evaluated to validate performance ratings higher than those verified by STEP.

Specific performance claims for oil and grease were not evaluated by STEP. However, total petroleum hydrocarbons (TPH) were analyzed during the Westwood study. Results indicated that the unit was effective in capturing oils.

Stormceptor	Maximum Impervious Area (acres)	
Model Number	77% TSS removal	52% TSS removal
STC 900	0.45	0.9
STC 1200	0.7	1.45
STC 1800	1.25	2.55
STC 2400	1.65	3.35
STC 3600	2.6	5.3
STC 4800	3.6	7.25
STC 6000	4.6	9.25
STC 7200	5.55	11.25

Table 1: Sizing for TSS removal (adapted from the manufacturer's sizing in the 1998 STEP Report) Use the table to determine a TSS removal rate. Use the new Rinker method for sizing Stormceptor units. The sizing method has been changed since publication of the STEP Report. Note: To achieve 52% and 77% TSS removal rates on some sites, it may be necessary to use lower maximum impervious areas than those in Table 1.

Technology Status

The Stormceptor system provides greater solids separation and higher TSS removal efficiencies than oil and grit separators. Stormceptor systems are among the category of hydrodynamic separators, which are flowthrough devices with the capacity to settle or separate grit, oil, sediment, or other pollutants from stormwater. According to the U.S. Environmental Protection Agency, "Hydrodynamic separators are most effective where the materials to be removed from runoff are heavy particulates - which can be settled - or floatables - which can be captured, rather than solids with poor settleability or dissolved pollutants."

The field studies evaluated for the STEP assessment predate the Stormwater Best Management Practice Demonstration Tier II Protocol (2001), which is applicable in Massachusetts and other states in the Technology Acceptance Reciprocity Partnership (TARP), to ensure quality controlled studies that can be shared among participating states. Therefore, interstate reciprocity is not available to the manufacturer, based on performance claims that were evaluated by STEP in 1998. If the TARP Protocol requirements are fulfilled in the future, the manufacturer could pursue reciprocal verification for Stormceptor systems in participating TARP states. More information on the TARP Protocol is available on the following Web site: www.dep.state.pa.us/ dep/deputate/pollprev/techservices/tarp.

Applications/Advantages

- Stormceptor systems identified in Table 1 should be used in combination with other BMPs to remove 80 percent of the average annual load of TSS (DEP Stormwater Policy Standard 4). Systems may be well suited for pretreatment in a mixed component system designed for stormwater recharge.
- Performance data show that Stormceptor may provide TSS removal rates in the range of 52 percent to 77 percent when sized according to Table 1. Higher TSS removal rates were achieved during low flow, low intensity storms with less than one third of an inch of runoff. Also, by reducing the impervious drainage area, relative to the system size, the STEP Technology Assessment Report indicated that higher removal efficiencies may be achievable. However, STEP recommends collection of additional data "representing a varied set of operating conditions over a realistic maintenance cycle to verify TSS removal rates greater than 80 percent."
- The Stormceptor system is suitable for new and retrofit applications. For retrofit applications, it should not

take the place of a catch basin for the systems that have been verified. Also, for retrofit applications, it should be installed in lateral lines and not main trunk lines.

- The system is particularly well suited in constricted areas and where space is limited.
- It also is suitable for use in areas of high potential pollutant loads (DEP Stormwater Policy Standard 5), where it may be used effectively in capturing and containing oil and chemical spills. *Web site:* www.state.ma.us/dep/ brp/stormwtr/stormpub.htm.

Considerations/Limitations

- Systems are not expected to provide significant nutrient (nitrogen and phosphorus) or fecal coliform removal.
- The systems are not recommended for use in critical areas, such as public drinking water supplies, certified vernal pools, public swimming beaches, shellfish growing areas, cold water fisheries, and some Areas of Critical Environmental Concern (ACECs), except as a pretreatment device for BMPs that have been approved by DEP for use in critical areas. The structural BMPs approved for use in critical areas are described in Standard 6 of the Stormwater Management Policy, www.state.ma.us/dep/brp/stormwtr/stormpub.htm.
- There is a limited set of useful data for predicting the relationship between treatment efficiency and loading rates. Removal efficiencies have not been demonstrated for all unit sizes.
- Further research is needed to determine how much TSS bypasses the treatment chamber during certain, higher velocity storm events which recur less frequently.
- Systems require regular maintenance to minimize the potential for washout of the accumulated sediments.

Reliability/Maintenance

All BMPs require scheduled, routine maintenance to ensure that they operate as efficiently as possible. Although maintenance requirements are site specific, a general relationship between cleaning needs and depths of sediment has been established by the manufacturer. Inspection of the Stormceptor interior should be done after major storm events, particularly in the first year of operation. It is recommended that material in the treatment chamber be pumped out by a vacuum truck semiannually, or when the sediment and pollutant loads reach about 15 percent of the total storage. If the unit is used for spill containment, it should be pumped after the event is contained. Typical cleaning costs were estimated by the manufacturer in 1998 to be \$250, with disposal costs averaging \$300 to \$500. The expected life of a system has been estimated to be 50 to 100 years.

Sediment Depths Indicating Required Maintenance		
Model Number	Sediment Depth (feet)	
STC 900	0.5	
STC 1200	0.75	
STC 1800	1	
STC 2400	1	
STC 3600	1.25	
STC 4800	1	
STC 6000	1.5	
STC 7200	1.25	

Table 2: The Stormceptor clean out is based on 15percent of the sediment storage volume in the

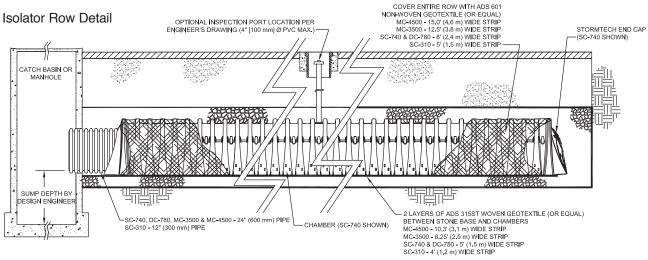
References

Winkler, E.S. 1998. "Technology Assessment, Stormceptor." University of Massachusetts, Amherst, MA. *STEP Web site:* www.STEPSITE.org/

Massachusetts Department of Environmental Protection and Office of Coastal Zone Management. 1997. "Stormwater Management Handbooks, Volumes One and Two." Boston, MA. *Handbooks Web site:* www.state.ma.us/dep/brp/ stormwtr/stormpub.htm.

United States Environmental Protection Agency. "Storm Water Technology Fact Sheet Hydrodynamic Separators." EPA 832-F-99-017.

Stormceptor Web sites: www.rinkermaterials.com/ stormceptor


TARP Web site: www.dep.state.pa.us/dep/deputate/ pollprev/techservices/tarp

STEP Verification vs. Regulatory Approval

STEP assistance to developers of innovative technologies and STEP verification of stormwater treatment systems is not required to receive necessary approvals from conservation commissions or the Department of Environmental Protection (DEP). However, if a system has received verification, a conservation commission shall presume that the technology will function as proposed, provided the conditions are similar to those in which performance was verified. STEP reports are not technology approvals, and do not constitute an endorsement or recommendation for use. Questions on regulatory issues should be referred to the DEP regional offices.

StormTech and Stormwater Quality

StormTech's patented Isolator[™] Row is a row of chambers wrapped in a geotextile which filters the stormwater trapping pollutants in the row. The Isolator Row provides a way to inspect and maintain the system.

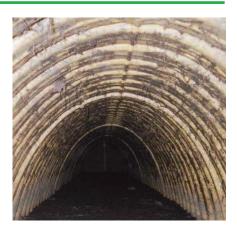
Note: For many applications, the non-woven geotextile over the DC-780, MC-3500 and MC-4500 Isolator Row chambers can be eliminated or substituted with the AASHTO Class 1 woven geotextile. Contact your StormTech representative for assistance.

Isolator Row Field Verification Testing at the University of New Hampshire Stormwater Center

- Field testing (TARP tier II protocol) of the Isolator Row has been ongoing since December 2006.
- Removal efficiencies for TSS have improved as the filter cake has built up on the bottom fabric of the Isolator Row.
- Current data shows a TSS removal efficiency which exceeds 80%.

Removal Efficiency Results:

- Total Suspended Solids = 80%
- Phosphorous = 49%
- Total Petroleum Hydrocarbons = 90%
- Zinc = 53%


Inspection and Maintenance

The Isolator Row can be inspected through the upstream manhole or optional inspection port.

Maintenance is easily accomplished with the JetVac process.

The frequency of inspection and maintenance varies by location. Contact StormTech for assistance with inspection and maintenance scheduling.

StormTech Isolator Row

The StormTech Isolator Row is an effective filtration/infiltration system best suited to locations where space is at a premium and the system's relatively expensive installation cost can be offset by increasing available space for development.

UNH EXCERPT STARTS HERE

About the StormTech Isolator Row

The StormTech Isolator Row is a manufactured system designed to provide subsurface water quality treatment and easy access for maintenance. It is typically used to remove pollution from runoff before it flows into unlined infiltration chambers designed for detention and water quantity control. The Isolator Row consists of a series of StormTech chambers installed over a layer of woven geotextile, which sits on a crushed stone infiltration bed surrounded with filter fabric. The bed is directly connected to an upstream manhole for maintenance access and large storm bypass. At UNHSC, the Isolator Row has met a TSS median annual removal standard of 80 percent, and exhibited an enhanced capacity to remove phosphorus. The Isolator Row is well suited for urban environments where space is at a premium.

Implementation

The StormTech Isolator Row is part of a class of manufactured, subsurface filtration/infiltration systems that are being used more and more throughout the United States. In general, these systems are best suited to locations where above ground space is at a premium. They are often used in urban areas, where they are located beneath parking lots and other infrastructure. As with any infiltration system, care must be taken when locating these systems near pollution hotspots, or where seasonal high groundwater levels may lead to groundwater contamination. In such cases, if installed, the systems should be lined to prevent infiltration into groundwater, and outfitted with subdrains that discharge to the surface. Designs for the StormTech Isolator Row are available from the manufacturer.

System Performance

Cost & Maintenance

While subsurface HDPE systems such as the Isolator Row tend to be more expensive than conventional stormwater treatments like retention ponds, the costs are ameliorated by the increase in available space for development. The cost to install a StormTech Isolator Row system large enough to treat runoff from one acre of impervious surface was \$34,000 in 2006.

In more than two years of operation, the system is at less than 50 percent of its recommended maintenance trigger point. Maintenance should be conducted when the sediment in the chambers reaches approximately three inches in depth according to recommendations from the manufacturer. Sediment accumulation can be monitored through inspection ports. When maintenance is needed, the entire row can be

CATEGORY / BMP TYPE Filtration, Infiltration, Manufactured Treatment Device

UNIT OPERATIONS

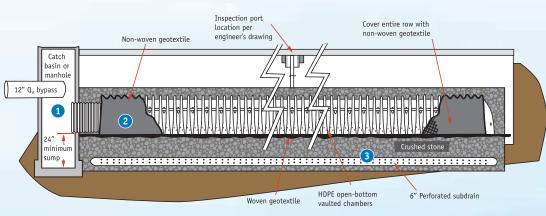
& PROCESSES

(Flow Alteration)

Hydrologic

Water Quality: Physical (Sedimentation, Filtration) & Chemical (Sorption)

DESIGN SOURCE StormTech, LLC


BASIC DIMENSIONS

Chamber: 51″ wide X 30″ high X 85.4″ long SPECIFICATIONS Catchment Area: 1 acre Water Quality Flow: 1 cfs Water Quality Volume: 3,300 cf INSTALLATION COST \$34,000 per acre treated MAINTENANCE Maintenance Sensitivity: Low Inspections: High Sediment Removal: Moderate

How the System Works

WATER QUALITY TREATMENT PROCESS V

- 1. Runoff flows into the Isolator Row chambers from a catchbasin or pipe.
- 2. Runoff slowly passes from the chambers through a woven geotextile fabric and into the crushed stone reservoir below the system. The runoff passes through the fabric, leaving behind sediments and associated contaminants through the physical unit operations of filtration and sedimentation. As an organic filter cake develops over the fabric, phosphorus is also removed via the chemical process of sorption.
- 3. Filtered runoff collects in a perforated subdrain and returns to a storm drain system, infiltrates into the subgrade, or is discharged to the surface.

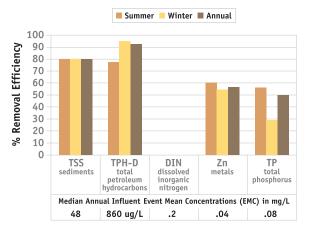
washed clean through an access manhole and by a hydro-jet with sediment removed by vactoring (vacuuming). Entry into the system is considered a confined space entry and requires trained personnel and equipment.

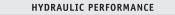
During two years of evaluation at UNHSC, the Isolator Row has accumulated, at most, one and one half inches of sediment in its chambers. As a result, researchers have not performed maintenance on the system. The Isolator Row presents an interesting opportunity to study the relationship between maintenance and performance. Researchers have observed enhanced phosphorus removal as the system develops an organic filter cake between the chambers and the woven geotextile fabric that lies beneath them. This enhancement is tempered by the likelihood that, as the filter cake continues to grow, hydraulic efficiency will decline and more runoff will bypass the system untreated until maintenance is performed. Analyses are underway to develop maintenance recommendations that balance and optimize the water quality and water quantity management abilities of this system.

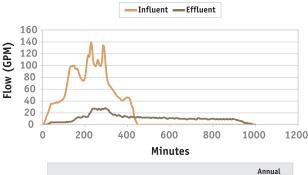
Cold Climate

This system's water quality treatment and volume control capacity remained strong in all seasons, reinforcing the conclusion that filtration and infiltration systems perform well, even in cold climates.

Water Quality Treatment


The StormTech Isolator Row system does a good job of reducing the concentration of common pollutants associated with stormwater performance assessment with the exception of nitrogen. It generally meets EPA's recommended level of removal for total suspended solids, and meets regional ambient water quality criteria for heavy metals and petroleum hydrocarbons. The system has a capacity to achieve modest levels of total phosphorus removal, which may be enhanced over time. (See Cost & Maintenance Section.) The lack of nitrogen treatment is typical for non-vegetated aerobic systems. Nutrient load reduction would be further increased through volume reduction by infiltration. Like all other systems monitored at UNHSC, it does not provide chloride removal.


The chart at top right reflects the system's performance in removing total suspended solids, total petroleum hydrocarbons, dissolved inorganic nitrogen, total phosphorus, and zinc. Values represent results recorded over a two-year monitoring period, with the data further divided into summer and winter components.


Water Quantity Control

Like other infiltration and filtration systems, the StormTech Isolator Row system exhibits the capacity to reduce peak flows and could be used to reduce runoff volume in appropriate soils, such as those belonging to groups "A" or "B." The figure at bottom right provides information on peak flow reduction and lag times for the system.

POLLUTANT REMOVAL: 2006-2008

	Winter	Summer	Annual Average	
Average Peak Flow Reduction	71%	81%	76%	
Average Lag Time (minutes)	358	190	274	

SYSTEM DESIGN 🔻

The StormTech Isolator Row is designed to provide subsurface water quality treatment for small storms. The manufacturer adapts the system's design in accordance with local watershed conditions and target treatment objectives.

Chamber units are made of high-density polyethylene (HDPE) pipe and are designed to bear loads consistent with those experienced by parking lots. The UNHSC chamber dimensions are 51 x 30 x 85.4 inches and can be linked together to form linear rows up to 200 feet long. The chambers are laid over woven geotextile, which rests on an infiltration base composed of one foot of three quarter inch crushed stone. The entire excavation is then wrapped in nonwoven geotextile to protect the system from the migration of fine particles from the surrounding soil.

A three- to five-foot separation from seasonal high groundwater table (as designated by regulations) is necessary to minimize the potential for groundwater contamination. Stormwater flows of up to one cubic foot per second (cfs) enter the system through an upstream manhole or other flow diverter. This is representative of flow-based sizing of a BMP common for devices that have limited detention or storage. Such devices are often better described by a maximum treatable flow rate as opposed to a treatment volume.

A bypass is incorporated in the StormTech system where flows exceeding the design rate are bypassed around the device and flow directly into adjacent chambers that can be sized to treat the CP_v and Q_p . Because of the bypass design, maintenance requirements are extremely important. A poorly maintained device would bypass prematurely into the unlined chamber systems and eventually clog subsurface soils resulting in system failure.

APPENDIX D

To meet the requirements of Standard 4 of the Massachusetts Stormwater Handbook, this Long-Term Pollution Prevention Plan is provided to identify the proper procedures of practices for source control and pollution prevention.

STORAGE AND HANDLING OF OIL AND OTHER HAZARDOUS MATERIALS

All oil products and other hazardous materials stored in quantities greater than or equal to 55 gallons will be stored in double walled tanks or provided with other means of secondary containment.

The handling/use of oil and vehicle maintenance fluids will be conducted in the vehicle maintenance and/or shop area of the facility, which will be equipped with floor drains connected to an oil/gas/sand separator prior to discharge to a tight tank.

VEHICLE STORAGE AND WASHING

Vehicles will be stored within the building or under the building canopy. Areas under cover or out in the open will be monitored for any potential contamination to the infiltration system or resource areas. Vehicle washing will be performed in the vehicle wash bay of the facility. Wash water will be collected by floor drains located within the wash bay and will be piped to a tight tank. The exterior knock down pad for rinsing vehicles will be treated with a deep sump hooded catch basin and a water quality structure prior to infiltration. This vehicle rinsing area will be registered with the DEP in accordance with the Underground Injection Control (UIC) regulations.

OPERATION AND MAINTENANCE OF STORMWATER CONTROL STRUCTURES

Included in this Appendix is the Operation and Maintenance plan for this site, which includes street sweeping of the paved areas and periodic removal of sediment from catch basins and other stormwater structures. The Department of Public Works will be responsible for the implementation of the plan.

MATERIAL STORAGE AREA

The material storage areas will be inspected and maintained, as required, to prevent erosion or any potential contamination to the infiltration system or resource areas.

LANDSCAPING

The landscaped areas will be maintained by the Department of Public Works. Fertilizers, if stored on site, will be stored under cover and no fertilizers will be stored within the buffer zone.

PET WASTE MANAGEMENT

It is not expected that pets will be accessing the facility; therefore, it is not necessary to design to manage pet waste.

WASTEWATER SYSTEM

Wastewater will be generated in the building. The building will be tied into the Town's sewer system, so there will be no onsite septic facilities.

DE-ICING & SNOW DISPOSAL

The DPW intends to utilize salt and sand to treat the paved surfaces of the driveways and main circulation areas during snow and ice events. Salt will be stored inside the proposed salt shed on site. Snow storage will consist of pushing snow into grassed areas along the perimeter of the property.

GOOD HOUSEKEEPING MEASURES

The DPW will implement good housekeeping measures to prevent any pollutants generated by the activities on site from entering surface waters and/or groundwater. These measures will include developing and following SPCC plan, maintaining stormwater BMP in accordance with O&M Plan to ensure optimal operation of stormwater BMPs, and following requirements of LTPPP plan as outline above.

SECTION 1 – INTRODUCTION

The project consists of construction of a new public works facility in Foxborough, MA. The new facility will be constructed on the site currently occupied by the existing public works facility, located at 70 Elm Street, Foxboro, MA. The work includes construction of a DPW garage expansion including 3 new maintenance bays and 1 wash bay, repaving of existing parking, circulations, and DPW yard areas, and expanding and reconfiguring of the school bus parking area. Additional improvements will include an upgraded closed drainage system, site utilities, fuel island with above-ground fuel storage tanks and canopy, pavement markings, signage, loam and seed, plantings, and other incidental work.

As part of this project, this "Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan" has been created to ensure that no disturbance to the wetland resource is created during the construction of these repairs.

SECTION 2 – CONSTRUCTION PERIOD POLLUTION PREVENTION MEASURES

Best Management Practices (BMPs) will be utilized as Construction Period Pollution Prevention Measures to reduce potential pollutants and prevent any off-site discharge. The objectives of the BMPs for construction activity are to minimize the disturbed areas, stabilize any disturbed areas, control the site perimeter and retain sediment. Both erosion and sedimentation controls and non-stormwater best management measures will be used to minimize site disturbance and ensure compliance with the performance standards of the Wetlands Protection Act (WPA) and MassDEP Stormwater Standards. Measures will be taken to minimize the area disturbed by construction activities to reduce the potential for soil erosion and stormwater pollution problems. In addition, good housekeeping measures will be followed for the day-to-day operation of the construction site under the control of the contractor to minimize the impact of construction. This section describes the control practices that will be in place during construction activities. All recommended control practices will comply with the standards set in the MassDEP Stormwater Handbook.

2.1 Minimize Disturbed Area and Protect Natural Features and Soil

To minimize disturbed areas, all work will be completed within well-defined work limits. These work limits are shown on the site plans included with this submission. The Contractor shall not disturb native vegetation in any undisturbed area without prior approval from the Engineer. The Contractor will be responsible to make sure that all workers know the proper work limits and do not extend their work into the undisturbed areas. The protective measures are described in more detail in the following sections.

2.2 Control Stormwater Flowing onto and through the project

The Contractor will be required to install compost filter tubes between the work area and the surrounding vegetation area and construct a grasses swale to keep runoff from upstream landscape areas from entering site drainage network.

2.3 Stabilize Soils

4

The Contractor shall limit the area of land which is exposed and free from vegetation during the project. The soils will be exposed for no longer that one week.

2.4 Proper storage and cover of any stockpiles

The location of the Contractor's storage areas for equipment and/or materials shall be upon cleared portions of the job site, or areas to be cleared as a part of this project, and shall require written approval of the Engineer.

Adequate measures for erosion and sediment control such as the placement of compost filter tubes around the downstream perimeter of stockpiles, and in front of water body, shall be employed to protect any downstream areas from siltation.

The Engineer may designate an area or areas where the Contractor may store materials used in his operations.

2.5 Perimeter Controls and Sediment Barriers

Erosion control lines as described in Section 5 will be utilized to ensure that no sedimentation occurs outside the perimeter of the work area.

2.6 Storm Drain Inlet Protection

Catch basin protection will be implemented for all catch basins affected by the work area. Inlet sediment control will be placed within the catch basin to minimize sediment loading into the catch basin.

2.7 Retain Sediment On-Site

The Contractor will be responsible to monitor all erosion control measures. Whenever necessary, the Contractor will clear all sediment from the compost filter tubes. Daily monitoring should be conducted using the attached Inspection Form.

2.8 Material Handling and Waste Management

All materials stored on-site will be stored in a neat, orderly manner in appropriate containers. All materials will be kept in their original containers with the original manufacturer's label. Substances will not be mixed with one another unless recommended by the manufacturer.

All waste materials will be collected and stored in a securely lidded metal container from a licensed management company. The waste and any construction debris from the site will be hauled off-site daily and disposed of properly. The contractor will be responsible for all waste removal. Manufacturer's recommendations for proper use and disposal will be followed for all materials.

. . . .

2.9 Designated Washout Areas

The Contractor shall use washout facilities at their own plants, unless otherwise directed by the Engineer.

2.10 Proper Equipment/Vehicle Fueling and Maintenance Practices

On-site vehicles will be monitored for leaks and receive regular preventative maintenance to reduce the risk of leakage. To ensure that leaks on stored equipment do not contaminate the site oilabsorbing mats will be placed under all equipment during storage. Regular fueling and service of the equipment may be performed using approved methods and with care taken to minimize chance of spills. Repair of equipment or machinery within the 100' water resources area shall not be allowed without the prior approval of the Engineer. Any petroleum products will be stored in tightly sealed containers that are clearly labeled.

2.11 Equipment/Vehicle Washing

The Contractor will be responsible to ensure that no equipment is washed on-site except to remove sediments prior to transport from the site.

SECTION 3 – SPILL PREVENTION AND CONTROL PLAN

The Contractor will be responsible for preventing spills in accordance with the project specifications and applicable federal, state and local regulations. The Contractor will identify a properly trained site employee, involved with the day-to-day site operations to be the spill prevention and cleanup coordinator. The name(s) of the responsible spill personnel will be posted on-site. Each employee will be instructed that all spills are to be reported to the spill prevention and cleanup coordinator.

3.1 Spill Control Equipment

Spill control/containment equipment will be kept in the Work Area. Materials and equipment necessary for spill cleanup will be kept either in the Work Area or in an otherwise accessible on-site location. Equipment and materials will include, but not be limited to, absorbent booms/mats, brooms, dust pans, mops, rags, gloves, goggles, sand, plastic and metal containers specifically for this purpose. It is the responsibility of the Contractor to ensure the inventory will be readily accessible and maintained.

3.2 Notification

All workers will be directed to inform the on-site supervisor of a spill event. The supervisor will assess the incident and initiate proper containment and response procedures immediately upon notification. Workers should avoid direct contact with spilled materials during the containment procedures. Primary notification of a spill should be made to the local Fire Department and Police Departments. Secondary Notification will be to the certified cleanup contractor if deemed necessary by Fire and/or Police personnel. The third level of notification is to the DEP. The specific cleanup contractor to be used will be identified by the Contractor prior to commencement of construction activities.

CONSTRUCTION PERIOD POLLUTION PREVENTION AND EROSION AND SEDIMENTATION CONTROL PLAN

3.3 Spill Containment and Clean-Up Measures

Spills will be contained with granular sorbent material, sand, sorbent pads, booms, or all of the above, to prevent spreading. Certified cleanup contractors should complete spill cleanup. The material manufacturer's recommended methods for spill cleanup will be clearly posted and on-site personnel will be made aware of the procedures and the location of the information and cleanup supplies.

3.4 Hazardous Materials Spill Report

The Contractor will report and record any spill. The spill report will present a description of the release, including the quantity and type of material, date of the spill, circumstances leading to the release, location of spill, response actions and personnel, documentation of notifications and corrective measures implemented to prevent reoccurrence.

This document does not relieve the Contractor of the Federal reporting requirements of 40 CFR Part 110, 40 CFR Part 117, 40 CFR Part 302 and the State requirements specified under the Massachusetts Contingency Plan (M.C.P) relating to spills or other releases of oils or hazardous substances. Where a release containing a hazardous substance or oil in an amount equal to or in excess of a reportable quantity established under either 40 CFR Part 110, 40 CFR Part 117 or 40 CFR Part 302, occurs during a twenty-four (24) hour period, the Contractor is required to comply with the response requirements of the above-mentioned regulations. Spills of oil or hazardous material in excess of the reportable quantity will be reported to the National Response Center (NRC).

SECTION 4 - CONTACT INFORMATION/RESPONSIBLE PARTIES

Owner/Operator:

Christopher Gallagher, Director Dept. of Public Works 70 Elm Street Foxborough, MA 02035 781-389-6139

Site Inspector: TBD Engineer: Alyssa Peck, PE Weston & Sampson, Inc. 100 Foxborough Blvd, Suite 250 Foxborough, MA 02035 508-203-8331

Contractor: TBD

SECTION 5 - EROSION AND SEDIMENTATION CONTROL

Erosion and Sedimentation Control details and layout can be found in the attached plan set. In addition, a technical specification (Environmental Protection) has been included with this report, which details all Erosion and Sedimentation controls.

SECTION 6 – SITE DEVELOPMENT PLAN

The Site Development Plan is included in the attached plan set.

SECTION 7 – OPERATION AND MAINTENANCE OF EROSION CONTROL

The erosion control measures will be installed as detailed in the technical specification. Environmental Protection. If there is a failure to the controls, the Contractor will be required to stop work until the failure is repaired.

Periodically throughout the work, whenever the Engineer deems it necessary, the sediment that has been deposited against the controls will be removed to ensure that the controls are working properly.

SECTION 8 – OPERATION AND MAINTENANCE OF EROSION CONTROL

During construction the erosion and sedimentation controls will be inspected daily. Once the contractor is selected, an on-site inspector will be selected to work closely with the Engineer to ensure that all erosion and sedimentation controls are in place and working properly. An Inspection Form is included.

westonandsampson.com

Inspection Form

Inspected	l By:		Date:Time:
YES	NO	DOES NOT APPLY	ITEM
			Do any erosion/siltation control measures require repair or clean out to maintain adequate function?
			Is there any evidence that sediment is leaving the site and entering the wetlands?
			Are any temporary soil stockpiles or construction materials located in non-approved areas?
			Are on-site construction traffic routes, parking, and storage of equipment and supplies located in areas not specifically designed for them?

Specific location, current weather conditions, and action to be taken:

Other Comments:

Pending the actions noted above I certify that the site is in compliance with the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan.

Signature:	Date:

SECTION I – PURPOSE/INTENT

The purpose of this document is to provide for the health, safety, and general welfare of the citizens of Foxborough, Massachusetts through the regulation of non-stormwater discharges into existing outstanding resource areas near the proposed public works facility site to the maximum extent practicable, as required by federal and state law. This document establishes methods for controlling the introduction of pollutants into existing outstanding resource areas to comply with requirements of the National Pollutant Discharge Elimination System (NPDES) permit process.

SECTION II - DEFINITIONS

For the purposes of this statement, the following shall mean:

Best Management Practices (BMPs): Schedules of activities, prohibitions of practices, general good housekeeping practices, pollution prevention and educational practices, maintenance procedures, and other management practices to prevent or reduce the discharge of pollutants directly or indirectly to stormwater, receiving waters, or stormwater conveyance systems. BMPs also include treatment practices, operating procedures, and practices to control site runoff, spillage or leaks, sludge or water disposal, or drainage from raw materials storage.

Clean Water Act: The federal Water Pollution Control Act (33 U.S.C § 1251 et seq.), and any subsequent amendments thereto.

Construction Activity: Activities subject to the Massachusetts Erosion and Sedimentation Control Act or NPDES Construction Permits. Such activities include but are not limited to clearing and grubbing, grading, excavating, and demolition.

Hazardous Materials: Any material, including any substance, waste, or combination thereof, which because of its quantity, concentration, or physical, chemical, or infectious characteristics may cause, or significantly contribute to, a substantial present or potential hazard to human health, safety, property, or the environment when improperly treated, stored, transported, disposed of, or otherwise managed.

Illegal Connection: An illegal connection is defined as either of the following:

- a. Any pipe, open channel, drain or conveyance, whether on the surface or subsurface, which allows an illicit discharge to enter the outstanding resource area including but not limited to any conveyances which allow any non-stormwater discharge including sewage, process wastewater, and wash water, regardless of whether said drain or connection has been previously allowed, permitted, or approved by an authorized enforcement agency; or
- b. Any pipe, open channel, drain or conveyance connected to the Town of Foxborough storm water treatment system which has not been documented in plans, maps, or equivalent records and approved by an authorized enforcement agency.

Illicit Discharge: Any direct or indirect non-stormwater discharge to the Town of Foxborough stormwater treatment system, except as exempted in Section II of this ordinance.

Industrial Activity: Activities subject to NPDES Industrial Permits as defined in 40CFR, Section 122.26 (b) (14).

National Pollutant Discharge Elimination System (NPDES) Stormwater Discharge Permit: A permit issued by MassDEP under authority delegated pursuant to 33 USC § 1342 (b) that authorizes the discharge of pollutants to waters of the United States, whether the permit is applicable on an individual, group, or general area-wide basis.

Town of Foxborough Stormwater Treatment System: Any facility, owned or maintained by the town, designed or used for collecting and/or conveying stormwater, including but not limited to roads with drainage systems, Town of Foxborough streets, curbs, gutters, inlets, catch basins, piped storm drains, pumping facilities, infiltration, retention and detention basins, natural and man-made or altered drainage channels, reservoirs, and other drainage structures.

Non-Stormwater Discharge: Any discharge to the storm drain system that is not composed entirely of stormwater.

Person: Any individual, association, organization, partnership, firm, joint venture, public or private corporation, trust, estate, commission, board, public or private institution, utility, cooperative, city, county or other political subdivision of the State, interstate body, or any other legal entity.

Pollutant: Anything which causes or contributes to pollution. Pollutants may include, but are not limited to: paints, varnishes, and solvents; petroleum hydrocarbons; automotive fluids; cooking grease; detergents (biodegradable or otherwise); degreasers; cleaning chemicals; non-hazardous liquid and solid wastes; refuse, rubbish, garbage, litter, or other discarded or abandoned objects and accumulations, so that same may cause or contribute to pollution; floatables; pesticides, herbicides, and fertilizers; liquid and solid wastes; sewage, fecal coliform and pathogens; dissolved and particulate metals; animal wastes; wastes and residues that result from constructing a building or structure; concrete and cement; and noxious or offensive matter of any kind.

Pollution: Contamination or other alteration of any water's physical, chemical, or biological properties by addition of any constituent including but not limited to a change in temperature, taste, color, turbidity, or odor of such waters, or the discharge of any liquid, gaseous, solid, radioactive, or other substance into any such waters as will or is likely to create a nuisance or render such waters harmful, detrimental, or injurious to the public health, safety, welfare, or environment, or to domestic, commercial, industrial, agricultural, recreational, or other legitimate beneficial uses, or to livestock, wild animals, birds, fish or other aquatic life.

Premises: Any building, lot, parcel of land, or portion of land whether improved or unimproved including adjacent sidewalks and parking strips.

Stormwater: Any surface flow, runoff, and drainage consisting entirely of water from any form of natural precipitation and resulting from such precipitation.

Wastewater: Any water or other liquid discharged from a facility, that has been used, as for washing, flushing, or in a manufacturing process, and so contains waste products.

SECTION III - PROHIBITIONS

Prohibition of Illicit Discharges:

No person shall throw, drain, or otherwise discharge, cause or allow others under its control to throw, drain, or otherwise discharge into the Town of Foxborough stormwater treatment system or watercourses any materials, including but not limited to, any pollutants or waters containing any pollutants, other than stormwater. The commencement, conduct, or continuance of any illicit discharge to the storm drain system is prohibited except as described as follows:

- 1. Water line flushing performed by a government agency, other potable water sources, landscape irrigation or lawn watering, diverted stream flows, rising ground water, ground water infiltration to storm drains, uncontaminated pumped ground water, foundation or footing drains (not including active groundwater dewatering systems), crawl space pumps, air conditioning condensation, springs, natural riparian habitat or wetland flows, and any other water source not containing pollutants;
- 2. Discharges or flows from firefighting, and other discharges specified in writing by the Town of Foxborough as being necessary to protect public health and safety;
- 3. Dye testing is an allowable discharge, but requires a verbal notification to the Town of Foxborough prior to the time of the test;
- 4. Any non-stormwater discharge permitted under an NPDES permit, waiver, or waste discharge order issued to the discharger and administered under the authority of the Federal Environmental Protection Agency, provided that the discharger is in full compliance with all requirements of the permit, waiver, or order and other applicable laws and regulations, and provided that written approval has been granted for a discharge to the Town of Foxborough stormwater treatment system.

SECTION IV – INDUSTRIAL OR CONSTRUCTION ACTIVITY DISCHARGES

Any person subject to an industrial or construction activity NPDES stormwater discharge permit shall comply with all provisions of such permit. Proof of compliance with said permit may be required in a form acceptable to the Town of Foxborough Department of Public Works prior to allowing discharges to the Arlington stormwater treatment system.

SECTION V - NOTIFICATION OF SPILLS AND ACCIDENTAL DISCHARGES

Notwithstanding other requirements of law, as soon as any person responsible for a facility, activity or operation, or responsible for emergency response for a facility, activity or operation has information of any known or suspected release of pollutants or non-stormwater discharges from that facility, activity, or operation which are resulting or may result in illicit discharges or pollutants discharging into stormwater, the Town of Foxborough stormwater treatment system, State Waters, or Waters of the U.S., said person shall take all necessary steps to ensure the discovery, containment, and cleanup of such release so as to minimize the effects of the discharge. In the event of such a release of hazardous materials, said person shall immediately notify emergency response agencies of the occurrence via emergency dispatch services. In the event of a release of non-hazardous materials, said person shall notify the Town of Foxborough Department of Public Works in person or by phone no later than the next business day, including the nature, quantity and time of occurrence of the discharge. Notifications in person or by phone shall be confirmed by written notice, via certified mail return receipt requested addressed to the Town of Foxborough Department of Public Works within three (3) business days of the initial notice. If the discharge of prohibited materials emanates from a commercial or industrial establishment, the owner or operator of such establishment shall also retain an on-site written record of the discharge and the actions taken to prevent its recurrence. Such records shall be retained for at least three years.

IN WITNESS WHEREOF the parties hereto have executed copies of this Agreement on the _____ day of _____, ____.

Christopher F. Gallagher, PE Director, Department of Public Works

Operation and Maintenance Plan

Foxborough Department of Public Works Facility

SECTION 1 – INTRODUCTION

The following document has been written to comply with the stormwater guidelines set forth by the Massachusetts Department of Environmental Protection (MassDEP). The intent of these guidelines is to encourage Low Impact Development techniques to improve the quality of the stormwater runoff. These techniques, also known as Best Management Practices (BMPs) collect, store, and treat the runoff before discharging to adjacent environmental resources.

SECTION 2 - PURPOSE

This Operation and Maintenance Plan (O&M Plan) is intended to provide a mechanism for the consistent inspection and maintenance of each BMP installed on the project site. Included in this O&M Plan is a description of each BMP type and an inspection form for each BMP. The Town of Foxboroubh is the owner and operator of the system and is responsible for its upkeep and maintenance. This work will be funded on an annual basis through the Town's operating budget. The estimated budget to maintain these BMPs utilizing the Department of Public Works workforce and equipment is approximately \$7,000 per year. This budget assumes that Town equipment will be utilized, and no additional equipment rental is required.

In the event the Town sells the property, it is the Town's responsibility to transfer this plan, as well as the past three years of operation and maintenance records, to the new property owner. The Owner shall also notify the planning board or its agent of the changes in ownership or assignment of financial responsibility.

SECTION 3 – BMP DESCRIPTION AND LOCATIONS

3.1 Street Sweeping

Street sweeping consists of using a street sweeping machine to clean impervious areas of accumulated sediment, debris, and trash at the parking areas surrounding the public works facility.

3.2 Deep Sump Hooded Catch Basins

Deep sump catch basins utilizing catch basin hoods will be located throughout the site and used as pre-treatment before entering the infiltration systems or other Town stormwater infrastructure. The deep sump catch basins are designed to remove trash, debris, hydrocarbons, and coarse sediment from the stormwater runoff.

3.3 Stormwater Treatment Unit Structures

There are five Stormwater Treatment Unit Structures on site. These structures are hydrodynamic separators and will be used for TSS and hydrocarbon removal before entering the subsurface infiltration chamber systems. Hydrodynamic separators provide effective spill control and can retain grit, suspended solids, oils and grease during periods of both low and high flows.

3.4 Outlet Control Structure

The outlet control structures are used to control discharges from captured stormwater. They release the water in a controlled manner to control peak discharges.

3.5 Drain Manholes

Drain Manholes will be located throughout the site and used to convey and redirect stormwater collected from deep sump catch basins. They allow for access, connection points, and change-indirection points in the underground drainage system.

3.6 Subsurface Infiltration chambers

There will be three subsurface infiltration systems built on site that will receive and treat stormwater. The infiltration chambers are designed to be constructed upon a layer of crushed stone to promote infiltration of stormwater. The storage provided by the chambers assist with mitigation of peak rate run off and pollutant removal.

SECTION 4 - INSPECTION, MAINTENANCE, AND SCHEDULE

4.1 Street Sweeping

Street sweeping shall be performed on all impervious surfaces on a quarterly basis, with sweeping performed primarily in the spring and fall. Street sweeping shall be performed using a high efficiency vacuum street sweeping machine or a regenerative air sweeper. A mechanical rotary broom sweeper may be used if sweeping is performed on a monthly basis.

In the event of contamination by a spill or other means, all street sweeping cleanings must be evaluated in accordance with the Hazardous Waste Regulations, 310 CMR 30.000 and handled as hazardous waste.

In the absence of evidence of contamination, street sweeping cleanings may be taken to a landfill or other facility permitted by MassDEP to accept Solid Waste without any prior approval by MassDEP. Please note that current MassDEP regulations prevent landfills from accepting materials that contain free-draining liquids.

4.2 Deep Sump Hooded Catch Basins and Outlet Control Structures

Inspect and/or clean catch basin and outlet control structures at least four times per year and at the end of foliage and snow removal seasons. Sediments must be removed whenever the depth of deposits is greater than or equal to one half the depth from the bottom of the invert of the lowest pipe in the basin. The structures should be cleaned a minimum of four times per year regardless of the amount of sediment in the basin. The site is considered a land use with a higher potential pollutant load, therefore if catch basins are found to be filled to capacity with sediment during a cleaning, the frequency of cleaning shall be increased. Catch basins and outlet control structures shall be cleaned with clamshell buckets or by hand tools where necessary. Catch basin hoods shall be inspected annually. Open and close the access hatch and flush or rod the anti-siphon device to ensure proper

operation.

In the event of contamination by a spill or other means, all cleanings must be evaluated in accordance with the Hazardous Waste Regulations, 310 CMR 30.000 and handled as hazardous waste.

In the absence of evidence of contamination, catch basin cleanings may be taken to a landfill or other facility permitted by MassDEP to accept Solid Waste without any prior approval by MassDEP. Please note that current MassDEP regulations prevent landfills from accepting materials that contain free-draining liquids.

4.3 Drain Manholes

Inspect and/or clean drain manholes at least four times per year while inspecting the catch basins. Remove all accumulated sediments and debris, and dispose of in accordance with local, state, and federal regulations. Drain Manholes shall be cleaned with clamshell buckets or by hand tools where necessary.

In the event of contamination by a spill or other means, all cleanings must be evaluated in accordance with the Hazardous Waste Regulations, 310 CMR 30.000 and handled as hazardous waste.

In the absence of evidence of contamination, manhole cleanings may be taken to a landfill or other facility permitted by MassDEP to accept Solid Waste without any prior approval by MassDEP. Please note that current MassDEP regulations prevent landfills from accepting materials that contain free-draining liquids.

4.4 Water Quality Structures

Water Quality Structures shall be inspected every six months for the first year. Following the first year, the structures can be inspected a minimum of once per year or as first year data indicates. After a hazardous spill, structures shall be inspected immediately. The structures shall be cleaned a minimum of once per year or when the sediment depth is 15% of its capacity. Polluted water, sediments, and debris should be disposed of in accordance with local, state, and federal regulations.

4.5 Subsurface Detention/Infiltration Chambers

The isolation row in the subsurface structures shall be inspected every six months during the first year, and annually thereafter. Inspection may be conducted from the surface using inspection ports. A stadia rod may be inserted to determine the depth of sediment. If upon visual inspection it is found that sediment has accumulated to an average depth exceeding 3-inches, cleanout is required. Cleaning out of the isolator row may be performed with a JetVac process as recommended by the manufacturer as shown in Attachment D Isolator row documentation

4.6 Inspections and Record Keeping

- An inspection form should be filled out every time maintenance work is performed.
- A binder should be kept at the Public Works Facility that contains all the completed

inspection forms and any other related materials.

- A review of all Operation & Maintenance actions should take place annually to ensure that these Stormwater BMPs are being taken care of in the manner described in this Operation & Maintenance Plan.
- All operation and maintenance log forms for the last three years, at a minimum, shall be kept on site at the Public Works Facility.

The inspection and maintenance schedule may be refined in the future based on the findings and results of this operation and maintenance program or policy.

SECTION 5 - GENERAL GOOD HOUSEKEEPING PRACTICES

All non-hazardous waste shall be stored in designated trash or recycling containers onsite for periodic collection by the local trash collector. The owner shall have maintenance staff who monitor the site for the accumulation of trash. Any trash that is seen onsite shall immediately be collected and placed into designated trash or recycling containers. The owner's maintenance staff shall make an inspection of the site once per week at minimum.

SECTION 6 - ANNUAL REPORTING

The owner must keep annual reports regarding the inspection and maintenance of the BMPs at the Public Works Facility. The reports must include:

- 1. Description of the conditions of the BMPs
- 2. Description of maintenance performed
- 3. Receipts for maintenance performed

SECTION 7 - OWNER MAINTENANCE AGREEMENT

The stormwater management system shall be owned and maintained by the following party:

Christopher Gallagher, PE Director of Public Works 70 Elm Street Foxboro, MA 02035

The owner of the stormwater management system has reviewed and understands the contents of this Stormwater Operation and Maintenance Plan. The signature below constitutes the owner's commitment to maintain the stormwater system in accordance with this plan.

Signature: _

Christopher Gallagher, DPW Director

Street Sweeping

Frequency:	Quarterly average, primarily in the spring and fall if using a high efficiency vacuum sweeper or regenerative air sweeper. Monthly, if using a mechanical rotary broom sweeper.	
Location:	Parking Lots and Driveways	
Inspected By:	Date:	
Observations:		
Actions Taken:		
Instructions:	Sweep all impervious areas, including parking lots, driveways, and roadways using high efficiency vacuum street sweeping machine, regenerative air sweeper, or mechanical rotary broom sweeper. All trash, debris, and sediments should be disposed of in accordance with local, state, and federal regulations	

.....

westonandsampson.com

Weston & Sampson

Deep Sump Catch Basins & Outlet Control Structures

Frequency: Inspect and/or clean catch basin and outlet control structures at least four times per year and at the end of foliage and snow removal seasons.

Structure Number:	
Inspected By:	Date:
Observations:	
Actions Taken:	
Instructions:	Clean units four times per year or wheneve

tructions: Clean units four times per year or whenever the depth of the deposits is greater than or equal to one half the depth from the bottom of the invert to the lowest pipe in the structure. Open and close hood and check anti-siphon vent for clogging.

westonandsampson.com

.....

Drain Manholes

Frequency:	Inspect and/or clean drain manholes at least four times per year while inspecting the catch basins.
Structure Number:	
Inspected By:	Date:
Observations:	
Actions Taken:	
Instructions:	Clean units four times per year at a minimum, or whenever catch basins are inspected. Remove sediment and debris. All debris, and sediments should be disposed of in accordance with local, state, and federal regulations. Drain Manholes shall be cleaned with clamshell buckets or by hand tools where necessary.

.....

Stormwater Treatment Unit Structures

Frequency:	Stormwater Treatment Unit Structures shall be inspected every
	six months for the first year. Following the first year, the
	structures can be inspected a minimum of once per year or as
	first year data indicates. After a hazardous spill, structures shall
	be inspected immediately.

Structure Number:	
Inspected By:	Date:
Observations:	
Actions Taken:	
Instructions	Clean unit when the addiment depth is 15

Instructions: Clean unit when the sediment depth is 15% of its capacity. Dispose of sediment and debris in accordance with local, state, and federal laws.

Subsurface Infiltration Chambers

Frequency:	The Subsurface Infiltration Chambers should be inspected every six months during the first year and annually thereafter.
Structure No.:	
Inspected By:	Date:
Observations:	
Actions Taken:	
Instructions:	Inspect underground isolation rows of chambers via manholes or inspection ports. Use reverse water jet to pull sediment back into manhole. Remove sediment, and dispose of in accordance with local, state, and federal regulations.
	Check that the subsurface infiltration chambers are draining completely within 72 hours of rain events. All trash, debris, and sediments should be disposed of in accordance with local, state, and federal regulations.

.....

westonandsampson.com

Weston & Sampson